It is shown that the simplified version of local density functional theory proposed by Gordon and Kim can be used to accurately determine the location of interaction energy minima associated with large π orbital planar molecules interacting at van der Waals distances. The results of this calculation have contributed to the understanding of the origin of tetrathiafulvalene (TTF) stacking in neutral crystalline TTF and in the quasi‐one‐dimensional organic conductor, tetrathiafulvalene–tetracyanoquinodimethane (TTF–TCNQ). This technique should be generally useful in determining the origin of the stacking geometries of large planar molecules such as, for example, observed between nucleic acid constituents.
REFERENCES
1.
H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, Oxford, 1969);
Intermolecular Interactions: From Diatomics to Biopolymers, edited by P. Pullman (Wiley, New York, 1978).
2.
A. I. Kitaigorodsky, Molecular Crystals and Molecules (Academic, New York, 1973).
3.
4.
5.
W. F.
Cooper
, J. W.
Edmonds
, F.
Wudl
, and P.
Coppens
, Cryst. Struct. Commun.
3
, 23
(1974
);T. E. Phillips, T. J. Kistenmacher, J. P. Ferraris, and D. O. Cowan, J. Chem. Soc. Chem. Commun. 1973, 471.
6.
T. J.
Kistenmacher
, T. E.
Phillips
, and D. O.
Cowan
, Acta Crystallogr. Sect. B
30
, 763
(1974
).7.
8.
B. D. Silverman and H. A. Govers (to be published).
9.
Quantum Chemistry Exchange Program 236, Indiana University.
10.
11.
12.
13.
R. G. Gordon (private communication).
14.
15.
B. D. Silverman, “The Crystal Structure of Organic Metals,” in Conformation of Molecular Solids (Springer, New York, to be published).
16.
17.
D. J.
Sandman
, A. J.
Epstein
, J. S.
Chickos
, J.
Ketchum
, J. S.
Fu
, and H. A.
Scheraga
, J. Chem. Phys.
70
, 305
(1979
).18.
This content is only available via PDF.
© 1980 American Institute of Physics.
1980
American Institute of Physics
You do not currently have access to this content.