We have carried out computer simulations of the freely jointed polymer chain with an excluded volume interaction using a dynamic Monte Carlo method for chain lengths N between N=8 and N=100. The equilibrium values of end‐to‐end distances and radius of gyration approach the asymptotic form ∼Nν for N≳70 (scaling limit) and excluded volume parameter d/l=1.0. The scaling limit decreases to lower N for lower d/l. Here l is the length of a chain unit and d is the excluded volume distance. The exponent is ν?0.6 for d/l≠0 and ν=0.5 for d/l=0. The structure function varies as S (k) ∼q−1/ν (q=kNν) over a wide range of q. This asymptotic behavior for large N is found for N≳16 and d/l≠0. Our results are carefully compared to previous studies on the same model where other types of Monte Carlo methods are used.

1.
P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).
2.
S. F.
Edwards
,
Proc. R. Soc.
85
,
613
(
1965
).
3.
C.
Domb
,
Adv. Chem. Phys.
15
,
229
(
1969
).
4.
K. F.
Freed
,
Adv. Chem. Phys.
22
,
1
(
1972
).
5.
P. G.
de Gennes
,
Phys. Lett.
38
,
339
(
1972
);
P. G.
de Gennes
,
Riv. Nuovo Cimento
7
,
363
(
1977
).
6.
J.
des Cloiseaux
,
Phys. Rev. A
10
,
1665
(
1974
).
7.
H.
Yamakawa
,
Ann. Rev. Phys. Chem.
25
,
179
(
1974
).
8.
P. R.
Gerber
and
M. E.
Fisher
,
J. Chem. Phys.
63
,
4941
(
1975
);
V. J.
Emery
,
Phys. Rev. B
11
,
239
(
1975
);
D.
Jasnow
, and
M. E.
Fisher
,
Phys. Rev. B
13
,
1112
(
1976
);
D. S.
McKenzie
,
Phys. Rep.
27
,
35
(
1976
).
9.
J. C.
Le Guillou
and
J.
Zinn‐Justin
,
Phys. Rev. Lett.
39
,
95
(
1977
).
10.
M.
Daoud
and
G.
Janntnk
,
J. Physique
37
,
973
(
1976
);
B.
Farnoux
,
F.
Bouú
,
J. P.
Cotton
,
M.
Daoud
,
G.
Jannink
,
M.
Nierlich
, and
P. G.
de Gennes
,
J. Phys. (Paris)
39
,
77
(
1978
).
11.
S. Windwer, in Markov Chains and Monte Carlo Calculations in Polymer Science (Dekker, New York, 1970) and references cited therein.
12.
F. T.
Wall
and
J.
Erpenbeck
,
J. Chem. Phys.
30
,
634
(
1959
);
Z.
Alexandrowicz
and
Y.
Accad
,
J. Chem. Phys.
54
,
5338
(
1971
).
13.
R.
Grishman
,
J. Chem. Phys.
58
,
220
(
1973
).
14.
N. C.
Smith
and
R. J.
Fleming
,
J. Phys. A
8
,
929
(
1975
).
15.
W.
Bruns
,
J. Phys. A
10
,
1963
(
1977
).
16.
P. H.
Verdier
and
W. H.
Stockmayer
,
J. Chem. Phys.
38
,
227
(
1962
);
P. H.
Verdler
,
J. Chem. Phys.
59
,
6119
(
1973
);
F. T.
Wall
and
P.
Mandel
,
J. Chem. Phys.
63
,
4592
(
1975
);
M.
Lax
and
C.
Brender
,
J. Chem. Phys.
87
,
1785
(
1977
).
17.
D.
Ceperley
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
Phys. Rev. Lett.
41
,
313
(
1978
);
D. C.
Rapaport
,
J. Phys. A
11
,
L213
(
1978
).
18.
A. Baumgärtner and K. Binder (to be published).
19.
P.
Debye
,
J. Phys. Colloid Chem.
51
,
18
(
1947
).
20.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
21.
K. Binder, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1979).
22.
H. J.
Hilhorst
and
J. M.
Deuteh
,
J. Chem. Phys.
83
,
5153
(
1975
).
23.
M.
Bixon
,
Ann. Rev. Phys. Chem.
27
,
65
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.