Kinetic energy distributions have been measured for O+ photofragments resulting from transitions O2+ (a4Πu, v, J, Ω) →O2+ (b3Σg,v′=4,N′,F′) →O+(4S0) +O(3P), where for the first time in the study of photodissociation all relevant quantum numbers involved are specified. Both 16,16O2+ and 16,18O2+ were studied. The measurements were made using a laser‐ion coaxial‐beams photofragment spectrometer, a single‐mode laser, and velocity tuning of the absorption wavelength. Experimental values of the anisotropy parameter β, which describes the angular distributions of the photofragments, were obtained by fitting the experimental energy distributions with calculated distributions, obtained from a Monte Carlo computer simulation of ion trajectories in the apparatus. Values of β were thus determined with an uncertainty of ±0.05 or less. They are compared with theoretical values of β obtained by a generalization to Hund’s case (b) of the theory previously developed by R. N. Zare. In a similar manner, values of the kinetic energy of separation of the photofragments in the center‐of‐mass system, W, are determined with an accuracy, in the most favorable case, of ±0.14 meV. The experimental W values are used, along with other spectroscopic data, to improve the bond dissociation energy values of the ground X3Σg state of O2, and of the a and b states of O2+. It is shown that for W<50 meV the dissociation strongly favors the O(3P2) channel over 3P1 and 3P0. This result is compared with several possible limiting‐case models of the long‐range couplings involved in the dissociation process, and it is concluded that the dissociation proceeds in a completely adiabatic way. Finally, further possible refinements of the present work are discussed.

1.
G. E.
Busch
and
K. R.
Wilson
,
J. Chem. Phys.
56
,
3626
(
1972
);
G. E.
Busch
and
K. R.
Wilson
,
56
,
3638
(
1972
); ,
J. Chem. Phys.
G. E.
Busch
and
K. R.
Wilson
,
56
,
3655
(
1972
); ,
J. Chem. Phys.
M.
Dzvonik
,
S.
Yang
, and
R.
Bersohn
,
J. Chem. Phys.
61
,
4408
(
1974
);
J. H.
Ling
and
K. R.
Wilson
,
J. Chem. Phys.
63
,
101
(
1975
).
2.
C. Pernot, J.‐B. Ozenne, M. Pánczél, and J. Durup, X ICPEAC Abstracts of Papers, p. 94 (Paris, 1977).
3.
R. N. Zare, Ph.D. Thesis, Harvard University (1964).
4.
R. N.
Zare
,
Mol. Photochem.
4
,
1
(
1972
).
5.
(a)
R.
Bersohn
and
S. H.
Lin
,
Adv. Chem. Phys.
16
,
67
(
1969
);
(b)
C.
Jonah
,
J. Chem. Phys.
55
,
1915
(
1971
);
S.
Yang
and
R.
Bersohn
,
J. Chem. Phys.
61
,
4400
(
1974
).
6.
S.
Mukamel
and
J.
Jortner
, (a)
J. Chem. Phys.
61
,
5348
(
1974
);
(b)
S.
Mukamel
and
J.
Jortner
,
Chem. Phys. Lett.
29
,
169
(
1974
).
7.
A.
Carrington
,
P. G.
Roberts
, and
P. J.
Sarre
,
Mol. Phys.
34
,
291
(
1977
);
A.
Carrington
,
P. G.
Roberts
, and
P. J.
Sarre
,
35
,
1523
(
1978
).,
Mol. Phys.
8.
M.
Tadjeddine
,
R.
Abouaf
,
P. C.
Cosby
,
B. A.
Huber
, and
J. T.
Moseley
,
J. Chem. Phys.
69
,
710
(
1978
).
9.
J. T.
Moseley
,
P. C.
Cosby
,
J.‐B.
Ozenne
, and
J.
Durup
,
J. Chem. Phys.
70
,
1474
(
1979
).
10.
M.
Horani
,
H.
Bukow
,
M.
Carré
,
M.
Druetta
, and
M. L.
Gaillard
,
J. Phys. (Paris)
40
,
C1
57
(
1979
);
M. L. Gaillard (private communication).
11.
J.
Schopman
,
A. K.
Barua
, and
J.
Los
,
Phys. Lett. A
29
,
112
(
1969
).
12.
B. A.
Huber
,
T. M.
Miller
,
P. C.
Cosby
,
H. D.
Zeman
,
R. L.
Leon
,
J. T.
Moseley
, and
J. R.
Peterson
,
Rev. Sci. Instrum.
48
,
1306
(
1977
).
13.
J. T.
Moseley
,
M.
Tadjeddine
,
J.
Durup
,
J.‐B.
Ozenne
,
C.
Pernot
, and
A.
Tabché‐Fouhaillé
,
Phys. Rev. Lett.
37
,
891
(
1976
).
14.
D. L.
Albritton
,
J. T.
Moseley
,
P. C.
Cosby
, and
M.
Tadjeddine
,
J. Mol. Spectrosc.
70
,
326
(
1978
).
15.
A.
Tabché‐Fouhaillé
,
J.
Durup
,
J. T.
Moseley
,
J.‐B.
Ozenne
,
C.
Pernot
, and
M.
Tadjeddine
,
Chem. Phys.
17
,
81
(
1976
).
16.
P. C. Cosby, J.‐B. Ozenne, J. T. Moseley, and D. L. Albritton, J. Mol. Spectrosc. (in press).
17.
M. Tadjeddine, Thèse de Doctorat d’Etat, Orsay (1978).
18.
P.
Erman
and
M.
Larsson
,
Phys. Scr.
15
,
335
(
1977
);
all observed transitions arise from b 3Σg,ν′ = 0−3 [P. Erman (private communication, 1978)].
19.
N. H. F.
Beebe
,
E. W.
Thulstrup
, and
A.
Andersen
,
J. Chem. Phys.
64
,
2080
(
1976
).
20.
D. L.
Albritton
,
A. L.
Schmeltkopf
,
W. J.
Harrop
,
R. N.
Zare
, and
J.
Czarny
,
J. Mol. Spectrosc.
67
,
157
(
1977
).
21.
J.
Durup
,
Colloq. Int. C.N.R.S.
273
,
107
(
1977
).
22.
C. Pernot, J.‐B. Ozenne, M. Pánczél, and J. Durup, X ICPEAC Abstracts of Papers, Vol. 1, p. 94 (Paris, 1977).
23.
An earlier computer program for this kind of use was developed by G. Comtet and is described in detail in her These de Doctorat de Spécialité, Orsay (1977).
24.
D. L. Albritton (private communication).
25.
U.
Fano
,
Phys. Rev.
124
,
1866
(
1961
).
26.
M. L. Gaillard (private communication).
27.
J. A. Beswick, Chem. Phys. (in press).
28.
(a) M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957);
(b) D. M. Brink and G. R. Satchler, Angular Momentum (Oxford University, Oxford, 1962).
29.
I. Kovács, Rotational Structure in the Spectra of Diatomic Molecules (Hilzer, London, 1969).
30.
M. Tadjeddine (private communication, 1978).
31.
D. L. Albritton (private communication, 1978).
32.
K.
Yoshino
and
Y.
Tanaka
,
J. Chem. Phys.
48
,
4859
(
1968
).
33.
C. E.
Moore
, “
Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables
,”
Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.
3
(
1976
).
34.
P.
Brix
and
G.
Herzberg
,
Can. J. Phys.
32
,
110
(
1954
).
35.
K.‐P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
36.
M. Tadjeddine, J. Chem. Phys. (submitted for publication).
37.
J. M.
Brown
,
J. T.
Hougen
,
K.‐P.
Huber
,
J. W. C.
Johns
,
I.
Kopp
,
H.
Lefebvre‐Brion
,
A. J.
Merer
,
D. A.
Ramsey
,
J.
Rostas
, and
R. N.
Zare
,
J. Mol. Spectrosc.
55
,
500
(
1975
).
38.
A. L. Roche and H. Lefebvre‐Brion (private communication, 1978).
This content is only available via PDF.
You do not currently have access to this content.