A molecular crossed beam apparatus which has been developed to perform electronic‐to‐vibrational, rotational, translational (EV,R,T) energy transfer studies is described. Its capabilities are illustrated on the basis of a number of energy transfer spectra obtained for collision systems of the type Na*+Mol(ν,j) →Na+Mol (ν′,j′) where Na* represents a laser excited sodium atom and Mol a diatomic or polyatomic molecule. Because of the lack of reliable dynamic theories on quenching processes, statistical approaches such as the ’’linearly forced harmonic oscillator’’ and ’’prior distributions’’ have been used to model the experimental spectra. The agreement is found to be satisfactory, so even such simple statistics may be useful to describe (EV,R,T) energy transfer processes in collision systems with small molecules.

1.
P. L. Lijnse, “Review of literature on quenching excitation and mixing cross sections for the first resonance doublets of the alkalies,” Report i 398, Fysish Laboratorium, Utrecht University (1972).
2.
P. L. Lijnse, Ph.D. Thesis, Utrecht University (1973).
3.
L.
Krause
,
Adv. Chem. Phys.
48
,
267
(
1975
).
4.
S. Lemont and G. W. Flynn, Ann. Rev. Phys. Chem. (to be published).
5.
I. V. Hertel, Adv. Chem. Phys. (in press).
6.
G.
Karl
,
P.
Kruus
, and
J. C.
Polanyi
,
J. Chem. Phys.
38
,
271
(
1963
).
7.
G.
Karl
,
P.
Kruus
, and
J. C.
Polanyi
,
J. Chem. Phys.
46
,
224
(
1967
).
8.
G.
Karl
,
P.
Kruus
,
J. C.
Polanyi
, and
I. W. M.
Smith
,
J. Chem. Phys.
46
,
244
(
1967
).
9.
H.
Heydtmann
,
J. C.
Polanyi
, and
R. T.
Taguchi
,
Appl. Opt.
10
,
1755
(
1971
).
10.
R. G.
Shortridge
and
M. C.
Lin
,
J. Chem. Phys.
64
,
4070
(
1976
).
11.
D. S. Y.
Hsu
and
M. C.
Lin
,
Chem. Phys. Lett.
42
,
78
(
1976
).
12.
S. R.
Leone
and
F. J.
Wodarczyk
,
J. Chem. Phys.
60
,
314
(
1974
).
13.
F. J.
Wodarczyk
and
F. B.
Sackett
,
Chem. Phys. Lett.
12
,
1872
(
1976
).
14.
A.
Hariri
,
A. B.
Peters
, and
C.
Wittig
,
J. Chem. Phys.
65
,
1872
(
1976
).
15.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Phys. Rev. Lett.
38
,
343
(
1977
).
16.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Phys. Rev. Lett.
36
,
861
(
1976
).
17.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Chem. Phys. Lett.
47
,
163
(
1977
).
18.
P. Botschwina, W. Meyer, and I. V. Hertel (to be published).
19.
Habitz (to be published).
20.
I. V. Hertel, H. Hofmann, W. Reiland, and K. A. Rost (to be published).
21.
A. B.
Petersen
,
C.
Wittig
, and
S. R.
Leone
,
Appl. Phys. Lett.
27
,
305
(
1975
).
22.
A. B.
Petersen
,
C.
Wittig
, and
S. R.
Leone
,
J. Appl. Phys.
47
,
1051
(
1976
).
23.
W. Müller (private communication).
24.
I. V.
Hertel
and
W.
Stoll
,
Adv. At. Mol. Phys.
13
,
113
(
1978
).
25.
I. V.
Hertel
and
W.
Stoll
,
J. Phys. B
7
,
570
(
1974
).
26.
I. V.
Hertel
and
W.
Stoll
,
J. Appl. Phys.
47
,
214
(
1976
).
27.
E.
Bauer
,
E. R.
Fisher
, and
F. R.
Gilmore
,
J. Chem. Phys.
51
,
4173
(
1969
).
28.
E. R.
Fisher
and
G. K.
Smith
,
Appl. Opt.
10
,
1803
(
1971
).
29.
A.
Bjerre
and
E. E.
Nikitin
,
Chem. Phys. Lett.
1
,
179
(
1969
).
30.
A. D.
Wilson
and
R. D.
Levine
,
Mol. Phys.
27
,
1197
(
1974
).
31.
R. B.
Bernstein
and
R. D.
Levine
,
Adv. At. Mol. Phys.
11
,
215
(
1975
).
32.
R. B.
Bernstein
and
R. D.
Levine
,
J. Chem. Phys.
57
,
434
(
1972
).
33.
A.
Ben‐Shaul
,
R. D.
Levine
, and
R. B.
Bernstein
,
J. Chem. Phys.
57
,
5427
(
1972
).
34.
K. A. Rost, Ph.D. Thesis Universität Kaiserslautern (1977).
This content is only available via PDF.
You do not currently have access to this content.