It is shown that the position space LCAO‐type wave functions for a many‐center one electron system can be easily obtained via a suitable momentum space approach. These wave functions and corresponding variational approximations to the eigenvalues are calculated via diagonalizations of simple overlap matrices. In the proposed approach the problems of many‐center integrals and instabilities due to overcompleteness of basis sets do not appear at all.

1.
H. J.
Monkhorst
and
F. E.
Harris
,
Int. J. Quantum Chem.
6
,
601
(
1972
).
2.
P. O.
Löwdin
,
Advan. Quantum Chem.
5
,
185
(
1970
).
3.
V. A.
Fock
,
Z. Phys.
98
,
145
(
1935
);
see also M. I. Petrashen and E. D. Trifonov, Applications of Group Theory in Quantum Mechanics (M.I.T., Cambridge, Mass., 1969), p. 188.
4.
T.
Shibuya
and
C. E.
Wulfman
,
Proc. R. Soc. (London)
286
,
376
(
1965
).
C. E. Wulfman, in Group Theory and Its Applications, edited by E. M. Loebl (Academic, New York, 1971), Vol. 2, pp. 145–197.
5.
L. C.
Biedenharn
,
J. Math. Phys.
2
,
433
(
1961
).
6.
W. Pogorzelski, Integral Equations and Their Applications (Pergamon Press, Oxford, 1966), Chap. 3.
7.
P. O.
Löwdin
,
Phys. Rev. A
139
,
357
(
1965
).
8.
P. O.
Löwdin
,
Adv. Phys.
5
,
111
(
1956
).
9.
H. J. Monkhorst (unpublished results).
This content is only available via PDF.
You do not currently have access to this content.