A magnetic circular dichroism (MCD) and absorption study has been made of the 1S (3s2) →1P (3s3p) transition of Mg atoms in Ne, Ar, Kr, and Xe matrices. Triplet structure is observed in the latter three, and a detailed analysis of the MCD shows that this structure results from a splitting of the 1P excited state at a single site. An analysis of the zeroth and first MCD and absorption moments shows that the orbital angular momentum of this 1P state is partially quenched, the quenching factors being approximately 0.65, 0.75, 0.50, and 0.43 in Ne, Ar, Kr, and Xe matrices, respectively. This quenching is necessarily a consequence of out‐of‐state mixing (i.e., orbital mixing outside the atomic 1P excited manifold) and almost certainly reflects strong mixing of the 3p Mg orbitals with noble gas orbitals on neighboring host atoms. An analysis of higher absorption and MCD moments assuming octahedral site symmetry shows a dominant noncubic (Jahn–Teller active) mode contribution to the bandwidth in the three hosts in which the triplet structure is resolved. This suggests a Jahn–Teller explanation of the triplet structure not only for Mg but also for other atoms in noble gas matrices whose SP transitions show the same general pattern. This pattern is characteristic of the T1×t2g Jahn–Teller case.

1.
O.
Schnepp
,
J. Phys. Chem. Solids
17
,
188
(
1961
).
2.
M.
Brith
and
O.
Schnepp
,
J. Chem. Phys.
39
,
2714
(
1963
).
3.
L.
Brewer
and
J. L.
Wang
,
J. Mol. Spectrosc.
40
,
95
(
1971
).
4.
L. B.
Knight
, Jr.
,
R. D.
Brittain
,
M. A.
Starr
, and
C. H.
Joyner
,
J. Chem. Phys.
61
,
5289
(
1974
).
5.
L. B.
Knight
and
M. A.
Ebner
,
J. Mol. Spectrosc.
61
,
412
(
1976
).
6.
J. E.
Francis
, Jr.
and
S. E.
Webber
,
J. Chem. Phys.
56
,
5879
(
1972
).
7.
J. M.
Brom
, Jr.
,
W. D.
Hewett
, Jr.
, and
W.
Weltner
, Jr.
,
J. Chem. Phys.
62
,
3122
(
1975
).
8.
J. C.
Miller
,
B. S.
Ault
, and
L.
Andrews
,
J. Chem. Phys.
67
,
2478
(
1977
).
9.
L.
Andrews
,
W. W.
Duley
, and
L.
Brewer
,
J. Mol. Spectrosc.
70
,
41
(
1978
).
10.
B. M. Chadwick, Molecular Spectroscopy, edited by R. F. Barrow, D. A. Long, and D. J. Millen, Specialist Periodical Reports (The Chemical Society, London, 1975), Vol. 3, p. 281.
11.
D. M. Gruen, in Cryochemistry, edited by M. Moskovits and G. A. Ozin (Wiley‐Interscience, New York, 1976), Chap. 10.
12.
S. A.
Malo
,
J. Chem. Phys.
61
,
2408
(
1974
).
13.
T. C.
DeVore
,
J. Chem. Phys.
62
,
520
(
1975
).
14.
F.
Forstmann
,
D. M.
Kolb
,
D.
Leutloff
, and
W.
Schulze
,
J. Chem. Phys.
66
,
2806
(
1977
).
15.
L.
Andrews
and
G. C.
Pimentel
,
J. Chem. Phys.
47
,
2905
(
1967
);
R. B.
Merrithew
,
G. V.
Marusak
, and
C. E.
Blount
,
J. Mol. Spectrosc.
29
,
54
(
1969
).
16.
W. W.
Duley
and
J.
Ryan
,
Chem. Phys. Lett.
21
,
208
(
1973
).
17.
M.
McCarty
,Jr.
and
G. W.
Robinson
,
Mol. Phys.
2
,
415
(
1959
);
A. A.
Belyaeva
,
Yu. B.
Predtechenskii
, and
L. D.
Shcherba
,
Opt. Spektrosk.
34
,
40
(
1973
)
[
A. A.
Belyaeva
,
Yu. B.
Predtechenskii
, and
L. D.
Shcherba
,
Opt. Spectrosc.
34
,
21
(
1973
)].
18.
S. L.
Kupperman
and
F. M.
Pipkin
,
Phys. Rev.
166
,
207
(
1968
).
19.
I. N.
Douglas
,
R.
Grinter
, and
A. J.
Thomson
,
Mol. Phys.
28
,
1377
(
1974
).
20.
In our discussion of the MCD spectra, there will be frequent reference to the Faraday 𝒶, ℬ, and 𝒸 terms and to the dipole strength 𝒟. We use these symbols without subscript in a generic sense to describe dispersion forms and append subscripts to designate explicit mathematical expressions. The first three terms (the Faraday parameters) together define the MCD and arise, on application of a longitudinal magnetic field, from, respectively, the Zeeman shift, field‐induced mixing, and population differentials induced among ground state Zeeman sublevels. We follow the new conventions outlined by Stephens (Ref. 21, especially Appendix II). The specific parameters of interest are a1,B0,C0, and D0, which are related to our previous parameters (Ref. 22) as follows: D0 = D/3,a1 = 2A/3β,B0 = −2B/3β,e0 = −2C/3β.a1, is associated with a first derivative MCD line shape and is defined to be positive (negative) if the line shape goes first negative (positive) and then positive (negative) going to higher energy. B0 and e0 are associated with absorptionlike line shapes and are defined as positive (negative) if their accompanying MCD is positive (negative). The MCD associated with e0 varies inversely with absolute temperature. D0 is proportional to the (zero‐field) absorption band area ∫(ε/ν)dν.The specific definitions and physical significance of these parameters have been discussed elsewhere.21
21.
P. J. Stephens, Advances in Chemical Physics, edited by I. Prigogine and Stuart A. Rice (Wiley, New York, 1976), Vol. 35, p. 197.
22.
S. B.
Piepho
,
W. H.
Inskeep
,
P. N.
Schatz
,
W.
Preetz
, and
H.
Homborg
,
Mol. Phys.
30
,
1569
(
1975
).
23.
C. E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, D.C., 1949), Circular No. 467, Vol. 1, p. 107.
24.
P. J.
Stephens
,
J. Chem. Phys.
52
,
3489
(
1970
).
25.
J. S. Griffith, The Theory of Transition‐Metal Ions (Cambridge University, Cambridge, England, 1961), Table A16.
26.
J. H.
Ammeter
and
D. C.
Schlosnagle
,
J. Chem. Phys.
59
,
4784
(
1973
).
27.
F. J.
Adrian
,
J. Chem. Phys.
32
,
972
(
1960
).
28.
P. H.
Kasai
and
D.
McLeod
,
J. Chem. Phys.
55
,
1566
(
1971
).
29.
C. H.
Henry
,
S. E.
Schnatterly
, and
C. P.
Slichter
,
Phys. Rev. A
137
,
583
(
1965
).
30.
R. Englman, The Jahn‐Teller Effect in Molecules and Crystals (Wiley‐Interscience, New York, 1972).
31.
M. J.
Schultz
and
R.
Silbey
,
J. Chem. Phys.
65
,
4375
(
1976
).
32.
A.
Fukuda
,
K.
Inohara
, and
R.
Onaka
,
J. Phys. Soc. Jpn.
19
,
1274
(
1964
).
33.
M.
Moskovits
and
J. E.
Hulse
,
J. Chem. Phys.
67
,
4271
(
1977
).
34.
S. M. Jacobs, R. L. Mowery, and P. N. Schatz (to be published).
35.
C. K.
Jen
,
V. A.
Bowers
,
E. L.
Cochran
, and
S. N.
Foner
,
Phys. Rev.
126
,
1749
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.