The theory of the kinetics of phase change is developed with the experimentally supported assumptions that the new phase is nucleated by germ nuclei which already exist in the old phase, and whose number can be altered by previous treatment. The density of germ nuclei diminishes through activation of some of them to become growth nuclei for grains of the new phase, and ingestion of others by these growing grains. The quantitative relations between the density of germ nuclei, growth nuclei, and transformed volume are derived and expressed in terms of a characteristic time scale for any given substance and process. The geometry and kinetics of a crystal aggregate are studied from this point of view, and it is shown that there is strong evidence of the existence, for any given substance, of an isokinetic range of temperatures and concentrations in which the characteristic kinetics of phase change remains the same. The determination of phase reaction kinetics is shown to depend upon the solution of a functional equation of a certain type. Some of the general properties of temperature‐time and transformation‐time curves, respectively, are described and explained.

1.
W. Ostwald, Lehrbuch der Allgemeinen Chemie, Vol. II, Part 2, p. 780.
2.
H. A.
Miers
,
J. Chem. Soc.
89
,
413
(
1906
);
H. A.
Miers
,
Proc. Roy. Soc.
A79
,
322
(
1907
).
3.
E. S.
Davenport
and
E. C.
Bain
,
Trans. Institute of Mining and Metallurgical Engineers, Iron and Steel Division
90
,
117
(
1930
).
E. C. Bain, 100, 13 (1932).
4.
A.
Huber
,
Zeits. f. Physik
93
,
227
(
1935
).
5.
E.
Scheil
,
Zeits. f. Anorg. Allgem. Chemie
201
,
259
(
1931
);
W.
Bading
,
E.
Scheil
, and
E. H.
Schulz
,
Arch. Eisenhüttenwes.
6
,
69
(
1932/33
);
E.
Scheil
and
H.
Wurst
,
Zeits. f. Metallkunde
28
,
340
(
1936
).
6.
C. H. Desch, The Chemistry of Solids (Cornell University Press, 1934).
7.
R.
Bloch
,
T.
Brings
, and
W.
Kuhn
,
Zeits. f. Physik. Chemie
12B
,
415
(
1931
).
8.
F.
v. Göler
and
G.
Sachs
,
Zeits. f. Physik
77
,
281
(
1932
).
9.
R. F. Mehl, “The Physics of Hardenability,” Symposium on Hardenability, American Society of Metals, Detroit, October, 1938.
10.
G. Tammann, Kristallisieren und Schmelzen (Leipzig, 1903).
11.
M.
Volmer
and
A.
Weber
,
Zeits. f. Physik. Chemie
119
,
277
(
1926
);
M.
Volmer
and
M.
Marder
,
Zeits. f. Physik. Chemie
A154
,
97
(
1931
).
12.
L. C.
de Coppet
,
Ann. Chem. et Phys.
8: 10
,
457
(
1907
).
13.
C.
Hammer
,
Ann. d. Physik
33
,
445
(
1938
).
14.
E.
Scheil
and
H.
Lange‐Weise
,
Archiv Eisenhüttenwesen
11
,
93
(
1937/38
).
15.
G.
Tammann
and
W.
Crone
,
Zeits. f. Anorg. Chemie
187
,
289
(
1930
).
16.
I. N.
Stranski
and
R.
Kaischew
,
Zeits. f. Physik. Chemie
B26
,
317
(
1934
);
I. N.
Stranski
and
R.
Kaischew
,
Physik. Zeits.
36
,
393
(
1935
).
17.
G.
Borelius
,
Ann d. Physik
33
,
517
(
1938
).
18.
R.
Becker
,
Ann. d. Physik
32
,
128
(
1938
).
19.
V. Volterra, Theory of Functionals (Blackie and Son, London, 1930).
20.
E. C.
Bain
,
Arch. Eisenhüttenw.
7
,
41
(
1933
).
21.
G.
Tammann
,
Zeits. f. Anorg. Chemie
214
,
407
(
1933
).
22.
G. B.
Upton
,
Trans. A.S.M.
22
,
690
(
1934
).
23.
J. B. Austin and R. L. Rickett, Metals Technology, September, 1938, T.P. No. 964.
24.
J. G.
Zimmerman
,
J. R.
Villela
, and
G. E.
Guellich
,
Metals and Alloys
22
, January,
1937
.
This content is only available via PDF.
You do not currently have access to this content.