High resolution photoionization efficiency curves have been obtained for CH3COCH3+ and CD3COCD3+ using supersonic molecular beam sampling. As a result of adiabatic cooling during the nozzle expansion, sufficient concentrations of (CH3COCH3)2, (CD3COCD3)2, (CH3COCH3)3, and (CH3COCH3)4 were formed to permit the study of their photoion yield curves as well. Appearance potential curves have been determined for CH3CO+, CD3CO+, and (CH3COCH3) ⋅CH3CO+ fragments. The measured ionization potentials of acetone and acetone‐d6 monomers are 9.694±0.006 and 9.695±0.006 eV, respectively. Transitions to higher vibrational levels in CH3COCH3+ are seen at 320, 695, and 930−1370 cm−1 above threshold. The effect of perdeutero substitution is to reduce these frequencies to 260 and 660–1100 cm−1. Appearance potentials of CH3CO+ and CD3CO+ fragments are observed at 10.52±0.02 and 10.56±0.02 eV, respectively. The measured ionization energies for (CH3COCH3)n, n=1–4, are found to decrease linearly as a function of 1/n. Observed ionization thresholds for (CH3COCH3)2, (CH3COCH3)3, and (CH3COCH3)4 are 9.26±0.03, 9.10±0.03, and 9.02±0.03 eV, respectively. Within experimental resolution, the ionization potentials of (CH3COCH3)2 and (CD3COCD3)2 are identical. The appearance potential of the process (CH3COCH3)2 → (CH3COCH3) ⋅CH3CO++CH3+e is found to be 10.08±0.05 eV. By consideration of appropriate thermodynamic cycles, a lower bound for the acetone dimer ion binding energy is calculated to be 0.538 eV (12.4 kcal/mole) and the desolvation energy of (CH3COCH3) ⋅CH3CO+ is estimated to be 0.544 eV (12.5 kcal/mole).

1.
P. W. Tiedemann, S. T. Ceyer, C. Y. Ng, D. J. Trevor, P. L. Kronebusch, B. H. Mahan, and Y. T. Lee, “Energetics of Molecule Ions by the Molecular Beam Photoionization Method,” 175th ACS National Meeting, Anaheim, CA, March 13–17, 1978.
2.
G. G. Jones, Ph.D. thesis, The University of Wisconsin, 1975.
3.
J. W. Taylor, G. R. Parr, and G. G. Jones “Photoionization Mass Spectrometry Using Molecular Beam Sampling and Synchrotron Radiation,” Vac. Ultraviolet Radiat. Phys., Proc. Int. Conf., 4th 1974, pp. 197–198.
4.
G. G.
Jones
and
J. W.
Taylor
,
J. Chem. Phys.
68
,
1768
(
1978
).
5.
C. Y.
Ng
,
D. J.
Trevor
,
P. W.
Tiedemann
,
S. T.
Ceyer
,
P. L.
Kronebusch
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
67
,
4235
(
1977
).
6.
C. Y.
Ng
,
P. W.
Tiedemann
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
66
,
5737
(
1977
).
7.
C. Y.
Ng
,
P. W.
Tiedemann
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
66
,
3985
(
1977
).
8.
C. Y.
Ng
,
D. J.
Trevor
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
66
,
446
(
1977
).
9.
C. Y.
Ng
,
D. J.
Trevor
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
65
,
4327
(
1976
).
10.
C. Y.
Ng
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
65
,
1956
(
1976
).
11.
C. Y. Ng, Ph.D. thesis, The University of California, Berkeley, CA, 1976.
12.
G. R.
Parr
and
J. W.
Taylor
,
Int. J. Mass Spectrom. Ion Phys.
14
,
467
(
1974
).
13.
G. R.
Parr
and
J. W.
Taylor
,
Rev. Sci. Instrum.
44
,
1578
(
1973
).
14.
G. R. Parr, Ph.D. thesis, The University of Wisconsin, 1973.
15.
G.
Mouvier
and
R.
Hernandez
,
Org. Mass Spectrom.
10
,
958
(
1975
).
16.
R. A. W.
Johnstone
,
F. A.
Mellon
, and
S. D.
Ward
,
Int. J. Mass Spectrom. Ion Phys.
5
,
241
(
1970
).
17.
M. A.
Haney
and
J. L.
Franklin
,
Trans. Faraday Soc.
65
,
1794
(
1969
).
18.
K.
Hirota
and
M.
Hatada
,
Kinet.
8
,
748
(
1967
).
19.
V. K.
Potapov
and
D. N.
Shigorin
,
Zh. Fiz. Khim.
40
,
200
(
1966
).
20.
D. N.
Shigorin
,
A. D.
Filyugina
, and
V. K.
Potapov
,
Teor. Eksperim. Khim.
2
,
554
(
1966
).
21.
F. H.
Dorman
,
J. Chem. Phys.
42
,
65
(
1965
).
22.
A.
Foffani
,
S.
Pignataro
,
B.
Cantone
, and
F.
Grasso
,
Z. Phys. Chem. (Frankfurt)
42
,
221
(
1964
).
23.
A.
Foffani
,
S.
Pignataro
,
B.
Cantone
, and
F.
Grasso
,
Nuovo Cimento
29
,
918
(
1963
).
24.
I.
Kanomata
,
Bull. Chem. Soc. Jpn.
34
,
1864
(
1961
).
25.
J. R.
Majer
,
C. R.
Patrick
, and
J. C.
Robb
,
Trans. Faraday Soc.
57
,
14
(
1961
).
26.
A. B.
King
and
F. A.
Long
,
J. Chem. Phys.
29
,
374
(
1958
).
27.
R. I.
Reed
and
J. C. D.
Brand
,
Trans. Faraday Soc.
54
,
478
(
1958
).
28.
K.
Higasi
,
I.
Omura
, and
H.
Baba
,
Nature
178
,
652
(
1956
).
29.
I.
Omura
,
K.
Higasi
, and
H.
Baba
,
Bull. Chem. Soc. Jpn.
29
,
504
(
1956
).
30.
J. D.
Morrison
and
A. J. C.
Nicholson
,
J. Chem. Phys.
20
,
1021
(
1952
).
31.
I.
Omura
,
T.
Kaneko
,
Y.
Yamada
, and
T.
Kondo
,
Mass Spectrosc.
16
,
349
(
1968
).
32.
V. K.
Potapov
,
A. D.
Filyugina
,
D. N.
Shigorin
, and
G. A.
Ozerova
,
Dokl. Akad. Nauk SSSR
180
,
398
(
1968
).
33.
E.
Murad
and
M. G.
Inghram
,
J. Chem. Phys.
40
,
3263
(
1964
).
34.
E.
Murad
and
M. G.
Inghram
,
J. Chem. Phys.
41
,
404
(
1964
).
35.
K.
Watanabe
,
T.
Nakayama
, and
J.
Mottl
,
J. Quant. Spectrosc. Radiat. Transfer
2
,
369
(
1962
).
36.
H.
Hurzeler
,
M. G.
Inghram
, and
J. D.
Morrison
,
J. Chem. Phys.
28
,
76
(
1958
).
37.
F. I.
Vilesov
and
A. N.
Terenin
,
Dokl. Akad. Nauk SSSR
115
,
744
(
1957
).
38.
K.
Watanabe
,
J. Chem. Phys.
26
,
542
(
1957
).
39.
K.
Watanabe
,
J. Chem. Phys.
22
,
1564
(
1954
).
40.
R.
Hernandez
,
P.
Masclet
, and
G.
Mouvier
,
J. Electron Spect. Related Phenom.
10
,
333
(
1977
).
41.
V. K.
Potapov
,
G. V.
Karachevtsev
, and
M. M.
Lipei
,
Khim. Vys. Energ.
11
,
107
(
1977
).
42.
V. Y.
Young
and
K. L.
Cheng
,
J. Chem. Phys.
65
,
3187
(
1976
).
43.
K.
Kimura
,
S.
Katsumata
,
T.
Yamazaki
, and
H.
Wakabayashi
,
J. Electron Spect. Related Phenom.
6
,
41
(
1975
).
44.
G.
Hentrich
,
E.
Gunkel
, and
M.
Klessinger
,
J. Mol. Struct.
21
,
231
(
1974
).
45.
J. Kelder, H. Cerfontain, B. R. Higginson, and D. R. Lloyd, Tetrahedron Lett. 1974, 739.
46.
H.
Ogata
,
J.
Kitayama
,
M.
Koto
,
S.
Kojima
,
Y.
Nihei
, and
H.
Kamada
,
Bull. Chem. Soc. Jpn.
47
,
958
(
1974
).
47.
W.‐C.
Tam
,
D.
Yee
and
C. E.
Brion
,
J. Electron Spect. Related Phenom.
4
,
77
(
1974
).
48.
C. R.
Brundle
,
M. B.
Robin
,
N. A.
Kuebler
, and
H.
Basch
,
J. Am. Chem. Soc.
94
,
1451
(
1972
).
49.
G. V.
Karachevtsev
,
V. K.
Potapov
, and
V. V.
Sorokin
,
Dokl. Akad. Nauk SSSR
206
,
144
(
1972
).
50.
A. W.
Potts
,
T. A.
Williams
, and
W. C.
Price
,
Faraday Discuss. Chem. Soc.
104
15
(
1972
)
54
.
51.
B. J. Cocksey, J. H. D. Eland, and C. J. Danby, J. Chem. Soc. B 1971, 790.
52.
M. J. S.
Dewar
and
S. D.
Worley
,
J. Chem. Phys.
50
,
654
(
1969
).
53.
M. I. Al‐Joboury and D. W. Turner, J. Chem. Soc. 1964, 4434.
54.
R.
Stockbauer
,
Int. J. Mass Spectrom. Ion Phys.
25
,
89
(
1977
).
55.
C. S. T.
Cant
,
C. J.
Danby
and
J. H. D.
Eland
,
J. Chem. Soc. Faraday Trans. II
71
,
1015
(
1975
).
56.
A. B. F.
Duncan
,
J. Chem. Phys.
3
,
131
(
1935
).
57.
D. S. C.
Yee
and
C. E.
Brion
,
J. Electron Spect. Related Phenom.
8
,
377
(
1976
).
58.
V.
Čermak
,
Collection Czech. Chem. Commun.
33
,
2739
(
1968
).
59.
M. A.
Slifkin
and
A. C.
Allison
,
Nature
215
,
949
(
1967
).
60.
R. H.
Huebner
,
R. J.
Celotta
,
S. R.
Mielczarek
, and
C. E.
Kuyatt
,
J. Chem. Phys.
59
,
5434
(
1973
).
61.
M. W. P.
Cann
,
Appl. Opt.
8
,
1645
(
1969
).
62.
J. A. R.
Samson
,
J. Opt. Soc. Am.
54
,
6
(
1964
).
63.
C.‐S.
Lu
and
H. E.
Carr
,
Rev. Sci. Instrum.
33
,
823
(
1962
).
64.
C. F.
Giese
,
Rev. Sci. Instrum.
30
,
260
(
1959
).
65.
G.
Herzberg
and
L. L.
Howe
,
Can. J. Phys.
37
,
636
(
1959
).
66.
J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967), p. 139.
67.
J. H.
Beynon
,
A. E.
Fontaine
, and
B. E.
Job
,
Z. Naturforsch. Teil A
21
,
776
(
1966
).
68.
Z.
Luczyński
and
H.
Wincel
,
Int. J. Mass Spectrom. Ion Phys.
23
,
37
(
1977
).
69.
A. S.
Blair
and
A. G.
Harrison
,
Can. J. Chem.
51
,
703
(
1973
).
70.
L. W.
Sieck
and
P.
Ausloos
,
Radiat. Res.
52
,
47
(
1972
).
71.
K. A. G.
MacNeil
and
J. H.
Futrell
,
J. Phys. Chem.
76
,
409
(
1972
).
72.
J. O. Terry and T. O. Tiernan, Proc. 16th Annual Conference on Mass Spectrometry and Allied Topics, ASTM Committee E14, Pittsburgh, PA, 1968, p. 33.
73.
V. K.
Potapov
,
Dokl. Akad. Nauk SSSR
183
,
386
(
1968
).
74.
M. S. B.
Munson
,
J. Am. Chem. Soc.
87
,
5313
(
1965
).
75.
R. S.
Mulliken
,
J. Chem. Phys.
3
,
564
(
1935
).
76.
J.
Chao
and
B. J.
Zwolinski
,
J. Phys. Chem. Ref. Data
5
,
319
(
1976
).
77.
G.
Dellepiane
and
J.
Overend
,
Spectrochim. Acta
22
,
593
(
1966
).
78.
J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (Wiley, New York, 1977), Chap. 3.
79.
G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, Princeton, NJ, 1966).
80.
M. L. Vestal, in Fundamental Processes in Radiation Chemistry, edited by P. Ausloos, (Interscience, New York, 1968), pp. 59–118.
81.
P. M.
Guyon
,
W. A.
Chupka
, and
J.
Berkowitz
,
J. Chem. Phys.
64
,
1419
(
1976
).
82.
R. S.
Mulliken
,
J. Chem. Phys.
52
,
5170
(
1970
).
83.
C.
Braun
and
H.
Leidecker
,
J. Chem. Phys.
61
,
3104
(
1974
).
84.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
85.
R. F.
Hajjar
,
W. B.
Kay
, and
G. F.
Leverett
,
J. Chem. Eng. Data
14
,
377
(
1969
).
86.
J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969), p. 76.
87.
J. D.
Lambert
,
G. A. H.
Roberts
,
J. S.
Rowlinson
, and
V. J.
Wilkinson
,
Proc. R. Soc. London Ser. A
196
,
112
(
1949
).
88.
J. S.
Rowlinson
,
Trans. Faraday Soc.
45
,
974
(
1949
).
89.
L. N.
Anderson
,
A. P.
Kudchadker
, and
P. T.
Eubank
,
J. Chem. Eng. Data
13
,
321
(
1968
).
90.
P. J.
Foster
,
R. E.
Leckenby
, and
E. J.
Robbins
,
J. Phys. B
2
,
478
(
1969
).
91.
E. J.
Robbins
,
R. E.
Leckenby
, and
P.
Willis
,
Adv. Phys.
16
,
739
(
1967
).
92.
A.
Herrmann
,
E.
Schumacher
, and
L.
Wöste
,
J. Chem. Phys.
68
,
2327
(
1978
).
93.
P. J.
Harbour
,
J. Phys. B
4
,
528
(
1971
).
94.
W. T. Simpson, Theories of Electrons in Molecules (Prentice‐Hall, Englewood Cliffs, NJ, 1962), Chap. 4.
95.
W. E. Spicer, in Optical Properties of Solids: New Developments, edited by B. O. Seraphin (American Elsevier, New York, 1976), pp. 667–671.
96.
K. Y.
Yu
,
J. C.
McMenamin
, and
W. E.
Spicer
,
Surf. Sci.
50
,
149
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.