The thermodynamic properties of the solutions of hydrogen in palladium at 245, 297, and 352 °C have been studied by a combined calorimetric–equilibrium method at pressures up to 34 atm. For hydrogen/palladium ratios up to x?0.35, the following equation within experimental precision represents the experimental data at 297 °C, i.e., near the critical temperature: Δ?H(cal mol−1) =Δ?HTΔ?H =−1750−8250x+12 000x3+T{11.52+R ln[x/(1−x)]}.

Using this expression we obtained the following values of the critical parameters: Tc=567 K; Pc=19.35 atm; xc =0.2414; we have also calculated the limits of the (α+β) two‐phase region xα(max) and xβ(min) at 245 °C to be 0.131 and 0.362, respectively. These calculated values are in good agreement with approximate values obtained directly from discontinuities in the observed partial enthalpies. Calorimetric measurements of the partial enthalpy in absorption and desorption measurements at 245 °C showed little evidence of hysteresis, and yielded Δ?H=−4.6 kcal mole−1 for the partial heat of absorption. This result is in good agreement with the average of earlier derived data from quasiequilibrium measurements.

1.
F. A. Lewis, The Palladium Hydrogen System (Academic, London and New York, 1957).
2.
G.
Boureau
,
O. J.
Kleppa
, and
P.
Dantzer
,
J. Chem. Phys.
64
,
5247
(
1976
).
3.
G.
Boureau
and
O. J.
Kleppa
,
J. Chem. Phys.
65
,
3915
(
1976
).
4.
J. F.
Lynch
and
T. B.
Flanagan
,
J. Chem. Soc. Faraday Trans. 1
70
,
814
(
1974
).
5.
See, for example,
D. H.
Everett
and
P.
Nordon
,
Proc. R. Soc. (London) Ser. A
259
,
341
(
1960
).
6.
G. N. Papatheodorou, unpublished Ph.D. Thesis, University of Chicago, 1969.
7.
G.
Boureau
and
O. J.
Kleppa
,
J. Chem. Thermodyn.
9
,
543
(
1977
).
8.
P.
Dantzer
and
O. J.
Kleppa
,
J. Chim. Phys. Phys. Chim. Biol.
2
,
215
(
1974
).
9.
T. V.
Charlu
,
O. J.
Kleppa
, and
T. B.
Reed
,
J. Chem. Thermodyn.
6
,
1065
(
1974
).
10.
L. J.
Gillespie
and
L. S.
Galstaun
,
J. Am. Chem. Soc.
58
,
2565
(
1936
).
11.
R. J.
Ratchford
and
G. W.
Castellan
,
J. Phys. Chem.
62
,
1123
(
1958
).
12.
A.
Maeland
and
T. R. P.
Gibb
, Jr.
,
J. Phys. Chem.
65
,
1270
(
1961
).
13.
Y.
de Ribaupierre
and
F. D.
Manchester
,
J. Phys. C
7
,
2126
(
1974
).
14.
H.
Frieske
and
E.
Wicke
,
Ber. Bunsenges. Phys. Chem.
77
,
48
(
1973
).
15.
T. B.
Flanagan
and
J. F.
Lynch
,
J. Phys. Chem.
79
,
444
(
1975
).
16.
E.
Wicke
and
G.
Nernst
,
Ber. Bunsenges. Phys. Chem.
68
,
224
(
1964
).
17.
J. D.
Clewley
,
T.
Curran
,
T. B.
Flanagan
, and
W. A.
Oates
,
J. Chem. Soc. Faraday Trans. 1
69
,
449
(
1973
).
18.
M. J. B.
Evans
and
D. H.
Everett
,
J. Less‐Common Metals
49
,
123
(
1976
).
19.
H.
Brüning
and
A.
Sieverts
,
Z. Phys. Chem. Abt. A
163
,
409
(
1933
).
20.
A.
Maeland
and
T. B.
Flanagan
,
J. Phys. Chem.
68
,
1419
(
1964
).
21.
A.
Maeland
and
T. B.
Flanagan
,
J. Phys. Chem.
69
,
3575
(
1965
).
22.
D. M.
Nace
and
J. G.
Aston
,
J. Am. Chem. Soc.
79
,
3619
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.