This work is a continuation and extension of the delineation of the properties of a quantum subspace—a region of the real space of a molecular system bounded by a surface through which the flux in the gradient of the (observable) charge density is zero. Such subspaces are of interest as they constitute a basis for theoretical definitions of chemical concepts as obtained through experiment. The subspace stationary state variational principle, which was previously used to define this particular class of subspaces, reveals a close interrelationship between the hypervirial theorem and the variational property of the energy. By exploiting this interrelationship, one may obtain a variational solution to Schrödinger’s equation with the zero‐flux surface requirement serving as a variational constraint. The connection between the statement of the subspace variational principle and the result of perturbation theory is established at the level of the first‐order correction to the total energy. The statement of the generalized time‐dependent subspace variational principle is derived using a modified form of Hamilton’s principle. The principle is also a variational statement of a time‐dependent hypervirial theorem, generalized to systems bounded by surfaces of zero‐flux in the gradient of the charge density. It, therefore, enables one to describe the time dependence of subspace averaged properties. The use of virial sharing operators, which permit the definition of single particle potential energies, in a quantum analogue of Hamilton’s extended principle, leads to a unique variational definition of the electronic energy within the Born–Oppenheimer approximation. In terms of this extended principle, both the classical and the quantum equations of motion are obtained for systems in which forces of constraint are operative by demanding that the integral of the variation of the kinetic energy plus the virtual work involved in the variation be zero. As a result of this discussion, the total energy of a subspace of a molecular system is defined in terms of separate electronic and nuclear contributions. This definition of the energy of a subspace applies whether or not applied forces are acting on the nuclei of the system.

1.
R. F. W.
Bader
,
S.
Srebrenik
, and
T. T. Nguyen
Dang
,
J. Chem. Phys.
68
,
3680
(
1978
), following paper.
2.
J.
Schwinger
,
Phys. Rev.
82
,
914
(
1951
).
3.
M.
Roux
,
S.
Besnainou
, and
R.
Daudel
,
J. Chim. Phys.
54
,
218
(
1956
);
R. F. W.
Bader
and
G. A.
Jones
,
J. Chem. Phys.
38
,
2791
(
1963
);
R. F. W.
Bader
,
J. Am. Chem. Soc.
86
,
5070
(
1964
);
R. F. W.
Bader
, and
W. H.
Henneker
,
J. Am. Chem. Soc.
87
,
3063
(
1965
); ,
J. Am. Chem. Soc.
R. F. W.
Bader
,
W. H.
Henneker
, and
P. E.
Cade
,
J. Chem. Phys.
46
,
3341
(
1967
);
R. F. W.
Bader
,
I.
Keaveny
, and
P. E.
Cade
,
J. Chem. Phys.
47
,
3381
(
1967
); ,
J. Chem. Phys.
B. J.
Ransil
and
J. J.
Sinai
,
J. Chem. Phys.
46
,
4050
(
1967
); ,
J. Chem. Phys.
R. F. W.
Bader
and
A. D.
Bandrauk
,
J. Chem. Phys.
49
,
1653
,
1666
(
1968
); ,
J. Chem. Phys.
R. F. W.
Bader
and
A. K.
Chandra
,
Can. J. Chem.
46
,
953
(
1968
);
P. E.
Cade
,
R. F. W.
Bader
,
W. H.
Henneker
, and
I.
Keaveny
,
J. Chem. Phys.
50
,
5313
(
1969
);
R. F. W.
Bader
and
J. L.
Ginsburg
,
Can. J. Chem.
47
,
3061
(
1969
);
R. F. W.
Bader
,
I.
Keaveny
and
G.
Runtz
,
Can. J. Chem.
47
,
2308
(
1969
); ,
Can. J. Chem.
R. F. W.
Bader
and
P. M.
Beddall
,
Chem. Phys. Lett.
8
,
29
(
1971
);
P. E.
Cade
,
R. F. W.
Bader
, and
J.
Pelletier
,
J. Chem. Phys.
54
,
3517
(
1971
);
R. F. W.
Bader
,
P. M.
Beddall
, and
P. E.
Cade
,
J. Am. Chem. Soc.
93
,
3095
(
1971
);
F. L.
Hirshfeld
and
S.
Rzotkiewics
,
Mol. Phys.
27
,
1319
(
1974
);
L. A.
Curtiss
,
C. W.
Kern
, and
R. L.
Mateha
,
J. Chem. Phys.
63
,
1621
(
1975
);
G. R.
Runtz
,
R. F. W.
Bader
, and
R. R.
Messer
,
Can. J. Chem.
55
,
3040
(
1977
).
4.
R.
McWeeny
,
Acta. Crystallogr.
4
,
513
(
1951
);
R.
McWeeny
,
7
,
180
(
1954
);
B.
Dawson
,
Proc. R. Soc. London Ser. A
298
,
255
,
264
(
1967
);
K.
Kurki‐Suonio
,
Acta. Crystallogr. Sect. A
24
,
379
(
1968
);
F. L.
Hirshfeld
,
Acta. Crystallogr. Sect. B
27
,
769
(
1971
);
A. M.
O’Connell
,
A. I. M.
Rae
and
E. N.
Maslen
,
Acta. Crystallogr.
21
,
208
(
1966
);
P.
Coppens
,
Science
158
,
1577
(
1967
);
R. F.
Stewart
,
J.
Bentley
, and
B.
Goodman
,
J. Chem. Phys.
63
,
3786
(
1975
).
5.
R. F. W.
Bader
and
P. M.
Beddall
,
J. Chem. Phys.
56
,
3320
(
1972
).
6.
R. F. W.
Bader
and
H. J. T.
Preston
,
Int. J. Quantum Chem.
3
,
327
(
1969
).
7.
R. F. W.
Bader
,
P. M.
Beddall
, and
J.
Peslak
, Jr.
,
J. Chem. Phys.
58
,
557
(
1973
).
8.
R. F. W.
Bader
and
G. R.
Runtz
,
Mol. Phys.
30
,
117
(
1975
).
9.
R. F. W.
Bader
and
P. M.
Beddall
,
J. Am. Chem. Soc.
95
,
305
(
1973
);
R. F. W.
Bader
,
A. J.
Duke
, and
R. R.
Messer
,
J. Am. Chem. Soc.
95
,
7715
(
1973
); ,
J. Am. Chem. Soc.
R. F. W.
Bader
and
R. R.
Messer
,
Can. J. Chem.
52
,
2268
(
1974
);
G. R.
Runtz
and
R. F. W.
Bader
,
Mol. Phys.
30
,
129
(
1975
).
10.
R. F. W.
Bader
,
Acc. Chem. Res.
8
,
34
(
1975
).
11.
S.
Srebrenik
and
R. F. W.
Bader
,
J. Chem. Phys.
61
,
2536
(
1974
).
12.
S. T.
Epstein
,
J. Chem. Phys.
60
,
3351
(
1974
).
13.
A.
Mazziotti
,
R. G.
Parr
, and
G.
Simons
,
J. Chem. Phys.
59
,
939
(
1973
).
14.
E.
Weislinger
and
G.
Olivier
,
Int. J. Quantum. Chem. Symp.
8
,
389
(
1974
).
15.
A. G.
McLellan
,
Am. J. Phys.
42
,
239
(
1974
).
16.
Jan‐Åke
Schweitz
,
J. Phys. A. Math Nucl. Gen.
10
,
507
,
517
(
1977
).
17.
S.
Srebrenik
and
R. F. W.
Bader
,
J. Chem. Phys.
63
,
3945
(
1975
);
for the one‐electron case see
S.
Srebrenik
,
Int. J. Quantum Chem.
9
,
375
(
1975
).
18.
In re‐expressing the results in Part I from those for a real ψ to those for the more general complex case, a factor of 12 was omitted in the variation of the term 12∇ψ*⋅∇ψ. This factor carries through the entire derivation and appears in the final expression for δG′(âψ,ω) and δG(âψ,ω), for example in Eqs. (3) and (7) of this paper. In Part I, the factor of 12 should first appear multiplying the term 1ψ⋅n1 in Eq. (15). It should appear as a factor multiplying the second surface integral in Eq. (18), and similarly for the first Surface integral in Eq. (20), to yield, in Eq. (26), δG(ψ,Ω) = 12s, and in Eq. (29), δG′(ψ,ω) = 12s/〈ψψ〉Ω. Equations (35), (38), (60), (61), (62), and (100) should be similarly altered by multiplication of the rhs of these equations by (12).
19.
This same manner of integration is sometimes denoted in a more abbreviated fashion as 〈〉Ω.
20.
H. Goldstein, Classical Mechanics (Addison‐Wesley, Reading, Mass., 1965), pp. 38, 350, 235.
21.
J. O.
Hirschfelder
,
J. Chem. Phys.
33
,
1762
(
1960
).
22.
In Part I,17 a general expression was given, Eq. (24), for the variation of a functional of ψ,∇ψ and 2ψ. The surface expression given in Eq. (24), however, is not the general result, but is the surface integral obtained from the variation of (14)∇2ρ(r). The correct surface term for the general case of a functional F = F(ψ,∇ψ,∇2ψ) is
where x denotes the x, y and z coordinates of electron 1 and A(1) is defined in Ref. 17.
23.
A. Messiah, Quantum Mechanics (North‐Holland, Amsterdam, 1958), Vol. I, p. 299–301.
24.
R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1953), Vol. I, p. 208–211.
25.
A.
Dalgarno
and
J. T.
Lewis
,
Proc. R. Soc. London Ser. A
233
,
70
(
1955
).
26.
J. O.
Hirschfelder
,
W.
Byers‐Brown
, and
S. T.
Epstein
,
Adv. Quantum Chem.
1
,
255
(
1964
).
27.
R. Mc Weeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics (Academic, New York, 1969), p. 96.
28.
J. O.
Hirschfelder
and
C. A.
Coulson
,
J. Chem. Phys.
36
,
941
(
1962
).
29.
G. G.
Hall
,
Philos. Mag.
6
,
249
(
1961
).
30.
The result given in Eq. (7) for δG′(âψ,Ω) is a special case of Eq. (41) since L(Ω) = −G(Ω) for a stationary state.
31.
P. Roman, Advanced Quantum Theory (Addison‐Wesley, Reading, Mass., 1965), pp. 8, 87.
32.
For a generator G of an infinitesimal contact transformation one has20∂G/∂qi = −δpi and ∂G/∂pi = δqi. For a generator G′ = pδq defined to have the properties31δq = {q,G′} and δp = {p,G′} = 0, one finds ∂G′/∂q = 0,∂G′/∂p = δq and hence ∂(δq)/∂q = 0. Thus δq is at most an explicit function of the time only.
33.
L. I. Schiff, Quantum Mechanics (McGraw‐Hill, New York, 1955), p. 346 ff, p. 344.
34.
In the virial expansion of the equation of state for a contained, imperfect gas, the virial of the “external forces,” the PV term, arises from the exchange of momentum of the gas molecules with the container walls. For a fragment of a molecular system bounded by a zero‐flux surface there is no exchange of momentum with the surface, Eq. (63), and the surface contributions to the virial of the fragment, δ′¯ or δ′¯+P¯, vanish as they do for the total system. The operator equivalent of the PV product is defined and used in quantum statistical mechanics.35 It is defined as
Thus the satisfaction of the virial theorem over a fragment of a molecular system implies that the average value of the PV product is zero; 〈(PV̂)〉Ω = 0.
35.
J. O. Hirschfelder, C. F. Curtiss, and R. Byron Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 399.
36.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
This content is only available via PDF.
You do not currently have access to this content.