We apply the theory of first passage times to the process of collision free unimolecular decomposition of large molecules at a given total energy. The theory is intermediate between the dynamical and statistical theories. We find that the rate of decomposition is given in terms of a series, the leading term of which has the form used in the RRKM theory. We analyze the conditions for which this term is dominant, and find that when the molecule is large or the total energy is low or the rate of decomposition is small, our expression coincides with the phase space approach. We show that the separation of time scales (energy redistribution vs decomposition) is large when the same conditions are met. Our analysis reduces to the Montroll–Shuler model for the decomposition of a diatomic molecule in a bath of inert atoms, in the appropriate limits.

1.
D. L. Bunker, Theory of Elementary Gas Reaction Rates (Pergamon, New York, 1966).
2.
P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley‐Interscience, New York, 1972).
3.
J. D.
McDonald
and
R. A.
Marcus
,
J. Chem. Phys.
65
,
2180
(
1976
).
4.
(a)
J. D.
Rynbrandt
and
B. S.
Rabinowitz
,
J. Phys. Chem.
75
,
2164
(
1971
);
(b)
J. F.
Meagher
,
K. J.
Chao
,
J. R.
Barker
, and
B. S.
Rabinowitz
,
J. Phys. Chem.
78
,
2535
(
1974
).
5.
(a)
J. M.
Parson
and
Y. T.
Lee
,
J. Chem. Phys.
56
,
4658
(
1972
);
(b)
K.
Shobatake
,
Y. T.
Lee
, and
S. A.
Rice
,
J. Chem. Phys.
59
,
6104
(
1973
);
(c)
G.
Worry
and
R. A.
Marcus
,
J. Chem. Phys.
67
,
1636
(
1977
).
6.
J. D.
Moehlmann
,
J. T.
Gleaves
,
J. W.
Hudgens
, and
J. D.
McDonald
,
J. Chem. Phys.
60
,
4790
(
1974
).
7.
For a recent review, see
V. S.
Letokhov
and
C. B.
Moore
,
Sov. J. Quant. Elect.
6
,
129
(
1976
).
8.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
).
9.
I.
Oppenheim
,
K. E.
Shuler
, and
G. H.
Weiss
,
Adv. Mol. Relax. Proc.
1
,
13
(
1967–68
).
10.
I. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT Press, Cambridge, MA, 1977).
11.
G. H.
Weiss
,
Adv. Chem. Phys.
13
,
1
(
1967
).
12.
I.
Oppenheim
,
K. E.
Shuler
, and
G. H.
Weiss
,
Physica (Utrecht)
88A
,
191
(
1977
).
13.
H. A.
Kramers
,
Physica (Utrecht)
7
,
284
(
1940
).
14.
For a review, see
B.
Widom
,
Science
148
,
1555
(
1975
).
15.
E. W.
Montroll
and
K. E.
Shuler
,
Adv. Chem. Phys.
11
,
361
(
1958
).
16.
(a)
R. J.
Hayward
and
B. R.
Henry
,
J. Mol. Spectrosc.
50
,
58
(
1974
);
R. J.
Hayward
and
B. R.
Henry
,
57
,
221
(
1975
); ,
J. Mol. Spectrosc.
R. J.
Hayward
and
B. R.
Henry
,
Chem. Phys.
12
,
387
(
1976
);
(b)
R. L.
Swafford
,
M. E.
Long
, and
A. C.
Albrecht
,
J. Chem. Phys.
65
,
179
(
1976
).
17.
R. Zwanzig, in Lectures in Theoretical Physics, edited by W. E. Brittin, B. W. Downs, and J. Downs (Interscience, New York, 1961).
18.
U.
Fano
,
Phys. Rev.
131
,
259
(
1963
).
19.
For a recent review, see
A.
Ben‐Reuven
,
Adv. Chem. Phys.
33
,
235
(
1975
).
20.
(a)
S.
Nordholm
and
S. A.
Rice
,
J. Chem. Phys.
62
,
157
(
1974
);
(b)
W. M.
Gelbart
,
S. A.
Rice
, and
K. F.
Freed
,
J. Chem. Phys.
57
,
4699
(
1972
);
(c)
K. G.
Kay
,
J. Chem. Phys.
61
,
5205
(
1974
).
21.
G. Z.
Whitten
and
B. S.
Rabinowitz
,
J. Chem. Phys.
38
,
2466
(
1963
).
22.
We note that in the ordinary derivation of the RRKM expressions, one usually assumes that the complex (the Nth level) has different frequencies from that of the molecule. Thus, Eq. (29) is more general than (28) and we can take ρ(N,E) to be of any form compatible with the structure of the complex.
23.
S.
Mukamel
,
I.
Procaccia
, and
J.
Ross
,
J. Chem. Phys.
68
,
1205
(
1978
).
24.
D. J.
Zvijac
,
S.
Mukamel
, and
J.
Ross
,
J. Chem. Phys.
67
,
2007
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.