An accurate three‐dimensional potential energy surface for H3 has been obtained by the configuration interaction (CI) method. The calculated energies, for 156 nuclear configurations, with the energy of the saddle point taken to be zero, are believed to lie within 0.1 kcal/mole of the exact clamped‐nuclei limit. The CI calculations used an extended one‐particle basis set of 4 s‐type, 3 p‐type, and 1 d‐type contracted Gaussian functions, and a nearly complete n‐particle basis set. In order to solve the large secular problem, the direct CI method was adapted to the problem of complete CI for three valence electrons. The properties of the accurate H3 potential surface were used to evaluate abinitio and semiempirical methods for potential surface calculations, with emphasis on their applications to other exchange reactions.

1.
(a)
G.
Wolken
and
M.
Karplus
,
J. Chem. Phys.
60
,
351
(
1974
);
(b)
A.
Kuppermann
and
G. C.
Schatz
,
J. Chem. Phys.
62
,
2502
(
1975
);
(c)
A. B.
Elkowitz
and
R. E.
Wyatt
,
J. Chem. Phys.
62
,
2504
(
1975
);
(d)
K. T.
Tang
and
B. H.
Choi
,
J. Chem. Phys.
62
,
3642
(
1975
);
(e)
J. C.
Light
and
R. B.
Walker
,
J. Chem. Phys.
65
,
4272
(
1976
);
(f)
G. C.
Schatz
and
A.
Kuppermann
,
J. Chem. Phys.
65
,
4668
(
1976
).
2.
B.
Liu
,
J. Chem. Phys.
58
,
1925
(
1973
).
3.
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
68
,
2466
(
1978
), following paper.
4.
J. O.
Hirschfelder
,
H.
Eyring
, and
N.
Rosen
,
J. Chem. Phys.
4
,
121
(
1936
).
5.
D. G.
Truhlar
and
R. E.
Wyatt
,
Ann. Rev. Phys. Chem.
27
,
1
(
1976
).
6.
D. G. Truhlar and R. E. Wyatt, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice, (John Wiley, New York, 1977), Vol. 36.
7.
I.
Shavitt
,
R. M.
Stevens
,
F. L.
Minn
, and
M.
Karplus
,
J. Chem. Phys.
48
,
2700
(
1968
).
8.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
49
,
192
(
1968
).
9.
F. B. van Duijneveldt, IBM Research Report RJ 945 (1971).
10.
W.
Kolos
and
L.
Wolniewiez
,
J. Chem. Phys.
43
,
2429
(
1965
).
11.
J. W.
Cooley
,
Math. Computation
15
,
363
(
1961
).
12.
P. Siegbahn, in Proceedings of SRC Atlas Symposium No. 4, “Quantum‐Chemistry—The State of the Art,” 1974.
13.
B. Roos and P. Siegbahn, Electronic Structure: Ab Initio Methods, Vol. II of Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977).
14.
B.
Roos
,
Chem. Phys. Lett.
15
,
153
(
1972
).
15.
E.
Brändas
and
O.
Goscinski
,
Phys. Rev. A
1
,
552
(
1970
).
16.
R. I.
Bartlett
and
E.
Brändas
,
J. Chem. Phys.
59
,
2032
(
1973
).
17.
A. D.
McLean
and
B.
Liu
,
J. Chem. Phys.
58
,
1066
(
1973
).
18.
J. Almlöf, USIP Report 74‐29 (1974).
19.
P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine, the Program System ALCHEMY. A. D. McLean in Potential Energy Surfaces in Chemistry, edited by W. Lester, 1970.
20.
I.
Shavitt
,
J. Chem. Phys.
49
,
4048
(
1968
).
21.
A. A.
Westenberg
and
N.
de Haas
,
J. Chem. Phys.
47
,
1393
(
1967
).
22.
I.
Shavitt
,
J. Chem. Phys.
31
,
1359
(
1959
).
23.
S. F. Boys and I. Shavitt, Wise. Naval Res. Lab. Tech. Rept. WISC‐AF‐13 (1959).
24.
F. O.
Ellison
,
N. T.
Huff
, and
J. C.
Patel
,
J. Am. Chem. Soc.
85
,
3544
(
1963
).
25.
R. N.
Porter
and
M.
Karplus
,
J. Chem. Phys.
40
,
1105
(
1964
).
26.
R. E.
Weston
, Jr.
,
J. Chem. Phys.
31
,
892
(
1959
).
27.
A. C.
Yates
and
W. A.
Lester
,
Chem. Phys. Lett.
24
,
305
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.