Multiple time scales, common in known chemical instability systems, lead to quasi‐steady state ’’behavior’’ surfaces in the phase space of chemical concentrations. A result of catastrophe theory is used to classify the types of topological features, the ’’elementary catastrophes,’’ that these surfaces may take on. By using a multiple time scale scheme we predict the wave form and velocity of a variety of propagating phenomena that can occur because of the various types of catastrophes such as the cuspoids and umbilics. Since the state of chemical equilibrium is unique, we show that the presence of catastrophes on the behavior surface is strictly due to nonequilibrium processes on a short time scale. An important implication of this work is that the topological analysis of multiple time scale systems unfolds the richness of the potential for the variety of propagating phenomena in reacting diffusing systems.
Skip Nav Destination
Article navigation
1 September 1977
Research Article|
August 26 2008
Catastrophe and propagation in chemical reactions
D. Feinn;
D. Feinn
Department of Chemistry, Indiana University, Bloomington, Indiana 47401
Search for other works by this author on:
P. Ortoleva
P. Ortoleva
Department of Chemistry, Indiana University, Bloomington, Indiana 47401
Search for other works by this author on:
J. Chem. Phys. 67, 2119–2131 (1977)
Citation
D. Feinn, P. Ortoleva; Catastrophe and propagation in chemical reactions. J. Chem. Phys. 1 September 1977; 67 (5): 2119–2131. https://doi.org/10.1063/1.435098
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00