Multiple time scales, common in known chemical instability systems, lead to quasi‐steady state ’’behavior’’ surfaces in the phase space of chemical concentrations. A result of catastrophe theory is used to classify the types of topological features, the ’’elementary catastrophes,’’ that these surfaces may take on. By using a multiple time scale scheme we predict the wave form and velocity of a variety of propagating phenomena that can occur because of the various types of catastrophes such as the cuspoids and umbilics. Since the state of chemical equilibrium is unique, we show that the presence of catastrophes on the behavior surface is strictly due to nonequilibrium processes on a short time scale. An important implication of this work is that the topological analysis of multiple time scale systems unfolds the richness of the potential for the variety of propagating phenomena in reacting diffusing systems.

1.
(a)
R. J.
Field
and
R. M.
Noyes
,
Nature (London)
237
,
390
(
1972
);
(b)
A. T.
Winfree
,
Science
175
,
643
(
1972
);
A. T.
Winfree
,
181
,
937
(
1973
); ,
Science
A. T.
Winfree
,
Sci. Am.
230
,
83
(
1974
).
2.
P.
Ortoleva
and
J.
Ross
,
J. Chem. Phys.
63
,
3398
(
1975
).
3.
P. C.
Tife
,
J. Chem. Phys.
64
,
554
(
1976
).
4.
(a) R. Thom, Stability, Structure and Morphogenesis (Benjamin, New York, 1972);
(b) A. E. R. Woodcock and T. Poston, A Geometrical Study of the Elementary Catastrophes, Lecture Notes in Mathematics, No. 373 (Spring, Berlin, 1974).
5.
D. D. Fitts, Nonequilibrium Thermodynamics (McGraw‐Hill, New York, 1962);
and S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland, Amsterdam, 1963).
6.
Apparently it is difficult to actually prove uniqueness of equilibrium. It has only been shown that at least one equilibrium exists although uniqueness is generally accepted. See for example I. Prigogine, Thermodynamics of Irreversible Processes (Interscience, New York, 1967);
and
J.
Wei
and
C. D.
Prater
,
Adv. Catal.
13
,
203
(
1962
).
7.
(a)
B.
Lavenda
,
G.
Nicolis
, and
M.
Herschkowitz‐Kaufman
,
J. Theor. Biol.
32
,
283
(
1971
);
(b)
H.‐S.
Hahn
,
A.
Nitzan
,
P.
Ortoleva
, and
J.
Ross
,
Proc. Natl. Acad. Sci. USA
71
,
4067
(
1974
).
8.
A.
Nitzan
,
P.
Ortoleva
, and
J.
Ross
,
Faraday Symp. Chem. Soc.
9
,
241
(
1974
).
9.
L. Caesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer, New York, 1971).
10.
N.
Koppel
and
L.
Howard
,
Stud. Appl. Math.
52
,
291
(
1973
).
11.
P.
Ortoleva
and
J.
Ross
,
J. Chem. Phys.
60
,
5090
(
1974
).
12.
P. Glandsorff and I. Prigogine, Thermodynamics of Structure, Stability and Fluctuations (Interscience, New York, 1971).
13.
R. J.
Field
and
R. M.
Noyes
,
J. Chem. Phys.
60
,
1877
(
1974
).
14.
H. S.
Hahn
,
P.
Ortoleva
, and
J.
Ross
,
J. Theor. Biol.
41
,
503
(
1973
).
15.
B. B.
Edelstein
,
J. Theor. Biol.
29
,
57
(
1970
).
16.
A.
Nitzan
and
J.
Ross
,
J. Chem. Phys.
59
,
241
(
1973
);
C. L.
Creel
and
J.
Ross
,
J. Chem. Phys.
65
,
3779
(
1976
).
17.
E. C. Zeeman, in Towards a Theoretical Biology (Aldine‐Atherton, Chicago, 1972), Vol. 4, p. 8.
18.
A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).
19.
J. Stanshine, Ph.D. Thesis, Massachusetts Institute of Technology, 1975.
20.
P. C. Fife, “Asymptotic Analysis of Reaction‐Diffusion Wave Fronts” (preprint).
21.
S. Schmidt and P. Ortoleva, “Catastrophe and Matched Composite Description of Chemical Waves” (in preparation).
This content is only available via PDF.
You do not currently have access to this content.