In a thermal system, the simple exponential (SE) model of transition probabilities provides a fairly simple analytical expression for the nonequilibrium rate constant (ko) for thermal dissociation of polyatomic gas. However, the SE model is poorly normalized, and because of some mathematical shortcuts it yields no relaxation times. The present work investigates two properly normalized versions of the exponential model, called Model A and Model B, and gives the analytic solution of the relaxation problem. In the case of Model A, which is the most realistic physically but difficult mathematically, the relaxation problem could be solved only for an infinite reaction threshold energy, yielding ko=0 together with a partly discrete and partly continuous spectrum of relaxation times. However, the mean first‐passage time approach yields a nontrivial expression for ko that is valid under most conditions likely to be encountered in practice. Model B is physically less realistic but mathematically simpler, and yields ko essentially equivalent to that of the SE model, but also provides some indication of how the relaxation times depend on the threshold energy. It is shown that the SE model yields a reliable ko only when energy transfer is inefficient and the threshold to reaction is high.

1.
J. C.
Polanyi
and
K. B.
Woodall
,
J. Chem. Phys.
56
,
1563
(
1972
);
A. M. G.
Ding
and
J. C.
Polanyi
,
Chem. Phys.
10
,
39
(
1975
);
R. B.
Bernstein
,
J. Chem. Phys.
62
,
4570
(
1975
).
2.
I.
Procaccia
and
R. D.
Levine
,
J. Chem. Phys.
63
,
4261
(
1975
);
D. F.
Heller
,
Chem. Phys. Lett.
45
,
64
(
1977
).
3.
R. C.
Bhattacharjee
and
W.
Forst
,
Chem. Phys. Lett.
26
,
395
(
1974
);
A. P.
Penner
and
W.
Forst
,
Chem. Phys.
11
,
243
(
1975
);
A. P.
Penner
and
W.
Forst
,
13
,
51
(
1976
); ,
Chem. Phys.
D. C.
Tardy
and
B. S.
Rabinovitch
,
J. Chem. Phys.
45
,
3720
(
1966
).
4.
J.
Troe
and
H. Gg.
Wagner
,
Ber. Bunsenges. Phys. Chem.
71
,
937
(
1967
);
also in Physical Chemistry of Fast Reactions, edited by B. P. Levitt (Plenum, London, 1973), p. 43ff;
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
72
,
908
(
1968
).
5.
W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973).
6.
J.
Keck
and
G.
Carrier
,
J. Chem. Phys.
43
,
2284
(
1965
);
E. E. Nikitin, Theory of Thermally Induced Gas Phase Reactions (Indiana U.P., Bloomington, IN, 1966), p. 129;
N. S.
Snider
,
J. Chem. Phys.
65
,
1800
(
1976
).
7.
R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1953), Vol. 1.
8.
B.
Widom
,
J. Chem. Phys.
32
,
913
(
1960
).
9.
J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin, New York, 1965), pp. 252 and 316.
10.
R. P. Kanwal, Linear Integral Equations: Theory and Techniques (Academic, New York, 1971), pp. 80–88.
11.
M.
Hoare
,
Mol. Phys.
4
,
465
(
1961
).
12.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1966).
13.
B.
Widom
,
J. Chem. Phys.
31
,
1387
(
1959
).
14.
B.
Widom
,
Adv. Chem. Phys.
5
,
377
(
1963
).
15.
I.
Procaccia
,
Y.
Shimoni
, and
R. D.
Levine
,
J. Chem. Phys.
63
,
3181
(
1975
).
16.
R. I.
Cukier
and
J. T.
Hynes
,
J. Chem. Phys.
64
,
2674
(
1976
).
17.
D.
Rapp
and
T.
Kassal
,
Chem. Rev.
69
,
61
(
1969
).
18.
W.
Forst
,
Chem. Phys. Lett.
1
,
687
(
1968
).
19.
G.
Pöschl
and
E.
Teller
,
Z. Phys.
83
,
143
(
1933
);
L.
Infeld
and
T. E.
Hull
,
Rev. Mod. Phys.
23
,
21
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.