Constraints that may be applied to the spin orbitals used in Hartree–Fock theory are classified and discussed. Once a constrained stationary wavefunction has been obtained by a self‐consistent procedure, it may be tested for stability both internally (with constraints remaining) and externally (with some constraints removed). Methods for carrying out these tests are presented. In addition, a general technique is described for further energy minimization following detection of an instability.

1.
D. J. Thouless, The Quantum Mechanics of Many‐Body Systems (Academic, New York, 1961).
2.
W. H.
Adams
,
Phys. Rev.
127
,
1650
(
1962
).
3.
P.‐O.
Löwdin
,
Rev. Mod. Phys.
35
,
496
(
1963
).
4.
J.
Koutecky
,
J. Chem. Phys.
46
,
2443
(
1967
).
5.
J.
Čízěk
and
J.
Paldus
,
J. Chem. Phys.
47
,
3976
(
1967
).
6.
J.
Paldus
and
J.
Čízěk
,
J. Chem. Phys.
52
,
2919
(
1970
).
7.
N. S.
Ostlund
,
J. Chem. Phys.
57
,
2994
(
1972
).
8.
P.‐O.
Löwdin
,
Adv. Chem. Phys.
14
,
283
(
1969
).
9.
L.
Brillouin
,
Actual. Sci. Ind.
159
(
1934
).
10.
J. A.
Pople
,
Int. J. Quantum Chem.
S5
,
175
(
1971
).
11.
W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Program No. 237, Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.
12.
R.
Seeger
and
J. A.
Pople
,
J. Chem. Phys.
65
,
265
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.