The method of molecular dynamics is applied to a solvent‐averaged model of electrolyte solutions, described by a generalized Langevin equation. For Brownian motion without solute–solute interactions, we recover the characteristic features of an infinitely dilute solution. For interacting brownons, the results exhibit a noticeable dependence of the calculated self‐diffusion coefficients on the influence of the Coulomb forces. The model system exhibits ion association when the Coulomb forces are made strong enough.
REFERENCES
1.
2.
3.
F.
Lantelme
, P.
Turq
, B.
Quintrec
, and J. W. E.
Lewis
, Mol. Phys.
28
, 1537
(1974
).4.
J. J.
Barojas
, D.
Levesque
, and B.
Quintrec
, Phys. Rev. A
7
, 1092
(1973
).5.
6.
7.
8.
9.
10.
H. S. Harned, The Physical Chemistry of Electrolyte Solutions (Reinhold, New York, 1958), 3rd ed.
11.
12.
13.
14.
15.
16.
H. L. Friedman, C. V. Krishnan, and L. P. Hwang, in Structure of Water and Aqueous Solutions, edited by W. Luck (Verlag Chemie, Weinheim, 1974).
17.
18.
19.
20.
21.
22.
23.
24.
P. S.
Ramanathan
and H. L.
Friedman
, J. Chem. Phys.
54
, 1086
(1971
).25.
S. G.
Brush
, H. L.
Sahlin
, and E.
Teller
, J. Chem. Phys.
45
, 2102
(1966
).26.
F. H.
Stillinger
and R. J.
Lovett
, J. Chem. Phys.
48
, 3858
–3869
(1968
);27.
J. P. Hansen (private communication for the comparison between MD and HNC in electrolytes).
28.
H. Falkenhagen, Theorie der Elektrolyte (Hirzel, Leipzig, 1971).
29.
30.
J. D. Doll, “Brownian Dynamics for Gaussian Random Sources” (private communication).
This content is only available via PDF.
© 1977 American Institute of Physics.
1977
American Institute of Physics
You do not currently have access to this content.