Stark and Stark–Zeeman transitions within single J states of ozone have been studied using molecular beam electric resonance spectroscopy. Results include dipole moment, μ; dipole moment of the first excited bending mode, μ (010); polarizability anisotropies, αaa−αbb and αaa−αcc; rotational magnetic moments, ga, gb, gc; magnetic susceptibility anisotropies, χaa−χbb and χaa−χcc; and quadrupole moment components, ϑaa, ϑbb, ϑcc. μ=0.5337(1) D, μ (010) =0.5261(1) D, αaa−αbb=2.82(1) Å3, αaa−αcc=2.63(4) Å3, gaa=2.98933(8), gbb=−0.22919(3), gcc=−0.07623(b), χaa−χbb=5.91(2) KHz/kg2, χaa −χcc=12.05(4) KHz/kg2, ϑaa=−1.4(2) ×10−26 esu⋅cm2, ϑbb=−0.7(2) ×10−26 esu⋅cm2, ϑcc=2.1(3) ×10−26 esu⋅cm2.

1.
A. D.
Buckingham
,
Discuss. Faraday Soc.
40
,
232
(
1965
).
2.
L. H.
Scharpen
,
J. S.
Muenter
, and
V. W.
Laurie
,
J. Chem. Phys.
53
,
2513
(
1970
).
3.
J. S.
Muenter
,
J. Chem. Phys.
56
,
5409
(
1972
).
4.
N. J.
Bridge
and
A. D.
Buckingham
,
Proc. R. Soc. London Ser. A
285
,
334
(
1966
).
5.
C. Townes and A. Schawlow, Microwave Spectroscopy (McGraw‐Hill, New York, 1955), Chap. 10.
6.
D. J. Millen and K. M. Sinnott, J. Chem. Soc. 1958, 350.
7.
J. M.
Pochan
,
R. G.
Stone
, and
W. H.
Flygare
,
J. Chem. Phys.
51
,
4278
(
1969
).
8.
S.
Rothenberg
and
H. F.
Schaefer
,
Mol. Phys.
21
,
317
(
1971
).
9.
S.
Rothenberg
and
H. F.
Schaefer
,
J. Chem. Phys.
53
,
3014
(
1970
).
10.
C. A.
Burrus
,
J. Chem. Phys.
30
,
976
(
1959
).
11.
N. F. Ramsey, Molecular Beams, (Oxford U.P., London, 1956), Chap. 10.
12.
J. R.
Eshbach
and
M. W. P.
Strandberg
,
Phys. Rev.
85
,
24
(
1952
);
B. F.
Burke
and
M. W. P.
Strandberg
,
Phys. Rev.
90
,
303
(
1953
).
13.
W.
Hüttner
and
W. H.
Flygare
,
J. Chem. Phys.
47
,
4137
(
1967
).
14.
M.
Lichtenstein
,
J. J.
Gallagher
, and
S. A.
Clough
,
J. Mol. Spectrosc.
40
,
10
(
1971
).
15.
W. H.
Flygare
and
R. C.
Benson
,
Mol. Phys.
20
,
225
(
1971
).
16.
J. S. Muenter and T. R. Dyke, MTP International Review of Science, Physical Chemistry, Series 2, Vol. 2, (Butterworths, London, 1975), pp. 27–92.
17.
Reference 7 comments on the unsuccessful efforts to observe the 212→303 and 414→505 transitions which would appear to lie in the 8–40 GHz frequency range. These levels all have statistical weights identically equal to zero because of nuclear spin statistics. As discussed in Ref. 5, p. 102, K−1 and K+1 must both be either odd or even for nonzero population. This situation is also evident from the observation of the above transitions for unsymmetrically substituted isotopic species of ozone.
18.
A methylcyclohexane slush was used.
19.
H. K.
Reimschuessel
and
G. A.
Mountford
,
J. Colloid Interface Sci.
25
,
558
(
1967
);
A. G.
Streng
,
J. Chem. Eng. Data
6
,
431
(
1961
).
20.
R. E.
Davis
and
J. S.
Muenter
,
J. Chem. Phys.
61
,
2940
(
1974
).
21.
J. S.
Muenter
,
J. Chem. Phys.
48
,
4544
(
1968
).
22.
F. H.
DeLeeuw
and
A.
Dymanus
,
Chem. Phys. Lett.
7
,
288
(
1970
).
23.
R. E.
Davis
and
J. S.
Muenter
,
Chem. Phys. Lett.
24
,
343
(
1974
).
24.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
25.
B.
Fabricant
and
J. S.
Muenten
,
J. Chem. Phys.
66
,
5274
(
1977
), preceding paper.
26.
The Stark coefficient of the initial level of a transition must be positive and larger than the final level coefficient for the transition to be observable.
27.
Reference 11, Chap. 5.
28.
Reference 5, p. 292.
29.
S. A.
Rice
and
W. A.
Klemperer
,
J. Chem. Phys.
27
,
573
(
1957
).
30.
G.
Nagarajan
,
Acta. Physica Polonica
28
,
869
(
1965
).
31.
K. M. Mack and J. S. Muenter (unpublished).
32.
A. W.
Ellenbroek
and
A.
Dymanus
,
Chem. Phys. Lett.
42
,
303
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.