This paper considers the characterization of disequilibrium in uniform systems in terms of the time evolution of the macroscopic observables. Using these as the independent variables the procedure of maximal entropy is employed to generate a new, complementary set of independent variables, the thermodynamic forces. An equation for the time rate of change of the macroscopic observables (i.e., for the thermodynamic fluxes) which is valid also for a finite displacement from equilibrium is derived. The kinetic coefficients satisfy reciprocity relations and reduce to the Onsager coefficients in the linear regime. An equation of motion which is linear in the thermodynamic forces throughout the relaxation process is then obtained using the Legendre transform technique. The two possible equations of motion are strictly equivalent and provide (complementary) generating functions for the thermodynamic forces and fluxes. Among all possible population distributions consistent with the magnitude of the macroscopic observables, the ’’most probable’’ distribution is shown to be characterized by having the lowest rate of entropy production throughout the relaxtion process. The Rayleigh–Onsager principle of least dissipation of energy is extended to the nonlinear regime. It is then employed as a variational principle to derive the equations of motion, which inherently satisfy the reciprocity relations and which are valid throughout the relaxation process. An evolution criterion for the system is thereby provided.

1.
E. W.
Montroll
and
K. E.
Shuler
,
Adv. Chem. Phys.
1
,
361
(
1961
).
2.
I.
Oppenheim
,
K. E.
Shuler
, and
G. H.
Weiss
,
Adv. Mol. Relaxation Processes
1
,
13
(
1967
).
3.
R. G.
Gordon
,
Adv. Magn. Reson.
3
,
1
(
1968
).
4.
D. A.
McQuarrie
,
Adv. Chem. Phys.
15
,
149
(
1969
).
5.
N. G.
Van Kampen
,
Adv. Chem. Phys.
15
,
65
(
1969
).
6.
M. N. Barber and B. W. Ninham, Random and Restricted Walks (Gordon and Breach, New York, 1970).
7.
R. I.
Cukier
and
K. E.
Shuler
,
J. Chem. Phys.
57
,
302
(
1972
).
8.
B. F.
Gordiets
,
A. I.
Osipov
,
E. V.
Stupochenko
, and
L. A.
Shelepin
,
Sov. Phys.‐Usp.
15
,
759
(
1973
).
9.
H.
Haken
,
Rev. Mod. Phys.
47
,
67
(
1975
).
10.
I.
Procaccia
,
Y.
Shimoni
and
R. D.
Levine
,
J. Chem. Phys.
65
,
3284
(
1976
), preceding paper.
11.
R. T.
Cox
,
Rev. Mod. Phys.
22
,
238
(
1950
).
12.
E. T.
Jaynes
,
Phys. Rev.
106
,
620
(
1957
).
13.
M. Tribus, Thermostatics and Thermodynamics (Van Nostrand, Princeton, 1961).
14.
E. T. Jaynes, in Statistical Physics (1962 Brandeis Lectures in Theoretical Physics), edited by K. W. Ford (Benjamin, New York, 1963), Vol. 3, p. 181.
15.
E. T.
Jaynes
,
Am. J. Phys.
33
,
391
(
1965
).
16.
A. Katz, Principles of Statistical Mechanics (Freeman, San Francisco, 1967).
17.
A. Hobson, Concepts in Statistical Mechanics (Gordon and Breach, New York, 1971).
18.
L.
Onsager
,
Phys. Rev.
37
,
405
(
1931
);
L.
Onsager
,
38
,
2265
(
1931
).,
Phys. Rev.
19.
See, for example, H. B. Callen, Thermodynamics (Wiley, New York, 1960), p. 90.
20.
See, for example, H. Goldstein, Classical Mechanics (Addison‐Wesley, Reading, 1960), p. 19.
21.
I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience, New York, 1967).
22.
P. Glansdorff and I. Prigogine, Structure Stability and Fluctuations (Interscience, New York, 1971).
23.
G.
Nicolis
,
Adv. Chem. Phys.
19
,
209
(
1971
).
24.
J. S. Turner, in Lectures in Statistical Physics, edited by W. C. Schieve and J. S. Turner (Springer Verlag, Berlin, 1974), p. 248.
25.
F.
Schtögl
,
Adv. Chem. Phys.
32
,
61
(
1975
) and references therein.
26.
See, for example, R. Ash, Information Theory (Interscience, New York, 1967), p. 8.
27.
The degeneracy is the number of states all of which are consistent with the specification of the level n (e.g., the 2J+1 sublevels of a rotational level J). For further discussion see Refs. 28 and 29.
28.
A.
Ben Shaul
,
R. D.
Levine
, and
R. B.
Bernstein
,
J. Chem. Phys.
57
,
5427
(
1972
).
29.
U.
Dinur
and
R. D.
Levine
,
Chem. Phys.
9
,
17
(
1974
).
30.
In equilibrium only constants of the motion appear as independent constraints. 16 For molecular systems this typically means the energy and the normalization conditions. The other M‐1 constraints will, at equilibrium, be dependent constraints and their Lagrange multipliers can be taken to equal zero. 10.
31.
For some concrete applications, see Ref. 10.
32.
For the time independent case these identities can be traced back to Gibbs [J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University, New Haven, 1902), p. 112]. I am indebted to Mr. N. Agmon for this reference.
33.
R. D.
Levine
and
R. B.
Bernstein
,
Chem. Phys. Lett.
22
,
217
(
1973
).
34.
Turning the argument around, the condition that M is nonsingular is equivalent to the moments being independent variables.
35.
The thermodynamic sign convention for the Legendre transform (cf. Ref. 19) is adopted here as well.
36.
N. G.
Van Kampen
,
Physica
67
,
1
(
1973
).
37.
A. Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics (Harvard University, Cambridge, 1966).
38.
ΔS is essentially equivalent to the function −H̿ of Tolman [R. C. Tolman, The Principles of Statistical Mechanics (Clarendon, Oxford, 1938), Secs. 104 and 105].
See also P. T. Landsberg, Thermodynamics (Interscience, New York, 1961), Sec. 34 and p. 371, in particular. It has since been used by several writers.
39.
For applications of the entropy deficiency in microdisequilibrium see R. D. Levine and R. B. Bernstein, “Thermodynamics of Collision Processes,” in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1976) and references therein.
40.
The zeroth law states that when two systems are in equilibrium with respect to the transfer of 〈Ap they have a common value of χp.
41.
If the relaxing system is strictly isolated then λr0 = 0,γ≠0. (At equilibrium, at a constant energy, and in the absence of constraints, all quantum states are equally probable). 16 The entire increase in the entropy of the system is then the internally produced entropy, as it should be.
42.
See the references quoted in Ref. 39 and those quoted in Ref. 10.
43.
A more quantitative treatment is possible using Eq. (48) of Ref. 10. This shows that ΔS decreases when decreasing the constraints on the system. The more distributions consistent with the data, the lower is ΔS.
44.
F.
Hofelich
,
Z. Phys.
226
,
395
(
1969
). The same geometrical argument can be applied as a criterion for the stability region about a (nonequilibrium) steady state
[
F.
Schlögl
,
Z. Phys.
243
,
303
(
1971
);
F.
Schlögl
,
248
,
446
(
1971
)].,
Z. Phys.
45.
H. C.
Andersen
,
I.
Oppenheim
,
K. E.
Shuler
, and
G. H.
Weiss
,
J. Math. Phys.
5
,
522
(
1964
).
46.
H. C.
Andersen
,
I.
Oppenheim
,
K. E.
Shuler
,
G. H.
Weiss
,
J. Chem. Phys.
41
,
3012
(
1964
).
47.
R. I.
Cukier
and
J. M.
Deutch
,
J. Chem. Phys.
46
,
3686
(
1967
).
48.
S. R. de Groot, Thermodynamics of Irreversible Processes (Interscience, New York, 1952).
49.
F. Schlögl, in Foundations of Continuum Thermodynamics, edited by J. J. Delgado Domngos, N. N. R. Nina, and J. H. Whitelaw (MacMillan, London, 1974), p. 113, and references therein.
50.
D. N.
Zubarev
and
V. P.
Kalashnikov
,
Theor. Math. Phys.
1
,
108
(
1969
).
51.
In equilibrium thermodynamics our definition of work has been previously discussed by Tisza [
L.
Tisza
,
Ann. Phys. (N.Y.)
13
,
1
(
1961
);
in A Critical Review of Thermodynamics, edited by E. B. Stuart, B. Gal‐Or, and A. J. Brainard (Mono, Baltimore, 1970), p. 107] who attributes it to Paul Samuelson.
52.
I.
Procaccia
and
R. D.
Levine
,
J. Chem. Phys.
62
,
3819
(
1975
).
53.
For the time independent case this result as well as Eq. (B2) were previously derived by Jaynes in Ref. 14.
54.
I. M.
Kreiger
and
P. J.
Gans
,
J. Chem. Phys.
32
,
247
(
1960
).
55.
K.
Ishida
,
J. Phys. Chem.
72
,
92
(
1968
).
56.
M. J.
Klein
,
Physica
22
,
569
(
1956
);
T.
Morimoto
,
J. Phys. Soc. Jpn.
18
,
328
(
1963
).
57.
O. Penrose, Foundations of Statistical Mechanics (Pergamon, Oxford, 1970).
58.
R. D. Levine, in Chemical and Biochemical Reactivity, edited by E. D. Bergman (Academy of Science, Jerusalem, 1973), p. 35.
59.
R. D.
Levine
and
R.
Kosloff
,
Chem. Phys. Lett.
28
,
300
(
1974
).
60.
See, for example, M. J. Berry, in Molecular Energy Transfer, edited by R. D. Levine and J. Jortner (Wiley, New York, 1976), p. 114.
61.
For examples of such considerations in the case of microdisequilibrium see Ref. 39 and references therein.
This content is only available via PDF.
You do not currently have access to this content.