Product translational energy distributions have been measured from an analysis of symmetrically broadened time‐of‐flight peaks of CH3+ and CD3+ ions in photoion–photoelectron coincidence spectra of CH3I and CD3I, respectively. The reactions were investigated at various precursor ion internal energies up to 1.7 eV above the dissociation threshold. We found that the experimentally obtained kinetic energy release distributions can be fitted accurately by simple exponential functions over the energy range considered. The experimental results are compared to predictions of the statistical theory of unimolecular reactions. An angular momentum conserving version of the quasiequilibrium theory, formulated in terms of the Langevin collision cross section model for the reverse association reaction, predicts kinetic energy release distributions which agree very well with the experimental results at precursor ion energies up to 0.65 eV above the dissociation onset. At approximately this energy, the average kinetic energy released begins to deviate sharply from the theoretically predicted average, possibly indicating the accessibility of a new reaction channel.

1.
A. S.
Werner
and
T.
Baer
,
J. Chem. Phys.
62
,
2900
(
1975
).
2.
T.
Baer
,
B. P.
Tsai
,
D.
Smith
, and
P. T.
Murray
,
J. Chem. Phys.
64
,
2460
(
1976
).
3.
S. A.
Safron
,
N. D.
Weinstein
, and
D. R.
Herschbach
,
Chem. Phys. Lett.
12
,
564
(
1972
).
4.
(a)
K.
Shobatake
,
Y. T.
Lee
, and
S. A.
Rice
,
J. Chem. Phys.
59
,
1435
(
1973
);
(b)
K.
Shobatake
,
J. M.
Parson
,
Y. T.
Lee
, and
S. A.
Rice
,
J. Chem. Phys.
59
,
1416
,
1427
(
1973
).,
J. Chem. Phys.
5.
Z.
Herman
,
A.
Lee
, and
R.
Wolfgang
,
J. Chem. Phys.
51
,
452
(
1969
).
6.
(a)
R. A.
Marcus
and
O. K.
Rice
,
J. Phys. Colloid Chem.
55
,
894
(
1951
);
(b)
G. M.
Wieder
and
R. A.
Marcus
,
J. Chem. Phys.
37
,
1835
(
1962
).
7.
H. B.
Rosenstock
,
M. B.
Wallenstein
,
A. L.
Warhaftig
, and
H.
Eyring
,
Proc. Natl. Acad. Sci.
38
,
667
(
1952
).
8.
(a)
J. C.
Light
,
J. Chem. Phys.
40
,
3221
(
1964
);
(b)
P.
Pechukas
,
J. C.
Light
, and
C.
Rankin
,
J. Chem. Phys.
44
,
794
(
1966
).,
J. Chem. Phys.
9.
P. F.
Knewstubb
,
Int. J. Mass Spectrom. Ion Phys.
6
,
217
,
229
(
1971
).
10.
(a)
C. E.
Klots
,
J. Phys. Chem.
75
,
1526
(
1971
);
(b)
C. E.
Klots
,
Z. Naturforsch. Teil A
27
,
553
(
1972
);
(c)
C. E.
Klots
,
J. Chem. Phys.
64
,
4269
(
1976
).
11.
M.
Quack
and
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
78
,
240
(
1974
).
12.
R. G. Cooks, J. H. Beynon, R. M. Caprioli, and G. R. Lester, Metastable Ions (Elsevier, Amsterdam, 1973).
13.
J. L. Holmes and F. M. Benoit, in Mass Spectrometry, edited by A. Maccoll (Butterworths, London, 1972).
14.
M. A.
Haney
and
J. L.
Franklin
,
J. Chem. Phys.
48
,
4093
(
1968
).
15.
D. T.
Terwilliger
,
R. G.
Cooks
, and
J. H.
Beynon
,
Int. J. Mass Spectrom. Ion Phys.
18
,
43
(
1975
).
16.
J. L.
Holmes
,
A. D.
Osborne
, and
G. M.
Weese
,
Int. J. Mass Spectrom. Ion Phys.
19
,
207
(
1976
).
17.
B. P.
Tsai
,
A. S.
Werner
, and
T.
Baer
,
J. Chem. Phys.
63
,
4384
(
1975
).
18.
(a)
B.
Brehm
,
J. H. D.
Eland
,
E.
Frey
, and
A.
Küstler
,
Int. J. Mass Spectrom. Ion Phys.
12
,
197
,
213
(
1973
);
(b)
B.
Brehm
,
R.
Frey
,
A.
Küstler
, and
J. H. D.
Eland
,
Int. J. Mass Spectrom. Ion Phys.
13
,
251
(
1974
).,
Int. J. Mass Spectrom. Ion Phys.
19.
C. G.
Rowland
,
J. H. D.
Eland
, and
C. J.
Danby
,
J. Chem. Soc. Faraday Trans. II
71
,
1015
(
1975
).
20.
K. C.
Kim
,
J. Chem. Phys.
64
,
3003
(
1976
).
21.
S. J.
Riley
and
K. R.
Wilson
,
Faraday Discuss. Chem. Soc.
53
,
132
(
1972
).
22.
T.
Baer
,
W. B.
Peatman
, and
E. W.
Schlag
,
Chem. Phys. Lett.
4
,
243
(
1969
).
23.
These stainless steel discs with holes of 0.013 mm diameter and 0. 51 mm length were obtained from Brunswick Corp.
24.
B. P.
Tsai
,
T.
Baer
,
A. S.
Werner
, and
S. F.
Lin
,
J. Phys. Chem.
79
,
570
(
1975
).
25.
W.
Chupka
,
J. Chem. Phys.
48
,
2337
(
1968
).
26.
K. E.
McCulloh
and
V. H.
Dibeler
,
J. Chem. Phys.
64
,
4445
(
1976
).
27.
We obtained the 298 °K heat of formation of CH3I (3.4 kcal/m) from J. P. Cox and G. Pilcher, Thermochemistry of Organic and Organmetallic Compounds (Academic, New York, 1970). From this we calculated that ΔHf° (0 °K) of CH3I is 5.26 kcal/m. Similarly, the ΔHf° (0 °K) of I was calculated to be 25.09 kcal/m.
28.
H. E.
Stanton
and
J. E.
Monahan
,
J. Chem. Phys.
41
,
3694
(
1964
).
29.
(a)
D. L.
Bunker
,
J. Chem. Phys.
40
,
1946
(
1964
);
(b)
D. L.
Bunker
and
W. L.
Hase
,
J. Chem. Phys.
59
,
4621
(
1973
); ,
J. Chem. Phys.
(c)
W. L.
Hase
and
D. F.
Feng
,
J. Chem. Phys.
61
,
4690
(
1974
).,
J. Chem. Phys.
30.
(a)
R. B.
Bernstein
and
R. D.
Levine
,
J. Chem. Phys.
57
,
434
(
1972
);
(b)
R. D.
Levine
and
J.
Manz
,
J. Chem. Phys.
63
,
4280
(
1975
); ,
J. Chem. Phys.
(c)
H.
Kaplan
and
R. D.
Levine
,
J. Chem. Phys.
63
,
5064
(
1975
).,
J. Chem. Phys.
31.
A.
Snelson
,
J. Phys. Chem.
74
,
537
(
1970
).
32.
G.
Herzberg
,
Proc. R. Soc. London Ser. A
262
,
291
(
1961
).
33.
G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, Princeton, NJ, 1967), p. 621.
34.
C. E.
Klots
,
J. Chem. Phys.
58
,
5364
(
1973
).
35.
We thank C. E. Klots for this observation.
36.
M. A.
Haney
and
J. L.
Franklin
,
J. Chem. Phys.
48
,
4093
(
1968
);
M. A.
Haney
and
J. L.
Franklin
,
Trans. Faraday Soc.
65
,
1794
(
1969
).
37.
R. C.
Dunbar
and
J. M.
Kramer
,
J. Chem. Phys.
58
,
1266
(
1973
).
38.
J. H. D. Eland, R. Frey, A. Kuestler, H. Schulte, and B. Brehm (to be published).
39.
R. C. Dunbar (private communication).
This content is only available via PDF.
You do not currently have access to this content.