The thermodynamic properties of palladium–hydrogen and palladium–deuterium solutions have been studied by a combined calorimetric–equilibrium method at 555 K for nH/nPd<0.01. For these dilute solutions the relative partial enthalpies and excess entropies of hydrogen are found to vary strongly with compostion, in a way which is not consistent with the known thermodynamic behavior of more concentrated alloys. From the limiting values of the partial enthalpies of solution for hydrogen (−2.27 kcal mol−1) and for deuterium (−1.80 kcal mol−1) we calculate from the Einstein model a vibrational frequency ν̃H for hydrogen in palladium of 695 cm−1, in reasonable agreement with the neutron scattering result for dilute solutions of Kley etal. (∼600 cm−1), but differing significantly from the much lower value of 420 cm−1 for PdH0.6 found by Bergsma and Goedkoop. The difference between the limiting values of the partial excess entropy of hydrogen (5.15 cal K−1⋅mol−1) and of deuterium (6.91 K−1⋅mol−1) is in excellent agreement with the value calculated from ν̃H and ν̃D=ν̃H/√2.

1.
F. A. Lewis, The Palladium‐Hydrogen System (Academic, New York, 1967).
2.
A.
Sieverts
,
Z. Phys. Chem.
88
,
451
(
1914
).
3.
A.
Sieverts
, and
G.
Zapf
,
Z. Phys. Chem. Abt. A
174
,
359
(
1935
).
4.
A.
Sieverts
, and
W.
Danz
,
Z. Phys. Chem. Abt. B
38
,
46
(
1937
).
5.
L.
Gillespie
and
L. S.
Galstaun
,
J. Am. Chem. Soc.
58
,
2565
(
1936
).
6.
L.
Gillespie
and
F. P.
Hall
,
J. Am. Chem. Soc.
48
,
1207
(
1926
).
7.
E.
Wicke
and
G.
Nernst
,
Ber. Bunsenges. Phys. Chem.
68
,
224
(
1964
).
8.
J. W.
Simons
and
T. B.
Flanagan
,
J. Phys. Chem.
69
,
3581
(
1965
).
9.
R.
Burch
and
N. B.
Francis
,
J. Chem. Soc. Faraday Trans. 1
69
,
1978
(
1973
).
10.
J. D.
Clewley
,
T.
Curran
,
T. B.
Flanagan
, and
W. A.
Oates
,
J. Chem. Soc. Faraday Trans. 1
69
,
449
(
1973
).
11.
M. J. B.
Evans
,
Can. J. Chem.
52
,
1200
(
1974
).
12.
D. H.
Everett
and
P.
Nordon
,
Proc. R. Soc. London Ser. A
259
,
341
(
1960
).
13.
J. F.
Lynch
and
T. B.
Flanagan
,
J. Chem. Soc. Faraday Trans. 1
70
,
814
(
1974
).
14.
D. M.
Nace
and
J. G.
Aston
,
J. Am. Chem. Soc.
79
,
3619
(
1957
).
15.
G. L.
Holleck
,
J. Phys. Chem.
74
,
503
(
1970
).
16.
J. R.
Lacher
,
Proc. R. Soc. London Ser. A
161
,
525
(
1937
).
17.
A.
Harashima
,
T.
Tanaka
, and
K.
Sakaoku
,
J. Phys. Soc. Jpn.
3
,
208
(
1948
).
18.
T.
Tanaka
,
K.
Sakaoku
, and
A.
Harashima
,
J. Phys. Soc. Jpn.
3
,
213
(
1948
).
19.
D. P.
Smith
,
Philos. Mag. 7, Ser.
39
,
477
(
1948
).
20.
G. G.
Libowitz
,
J. Appl. Phys.
33
,
399
(
1962
).
21.
Y.
Ebisuzaki
and
M.
O’Keeffe
,
J. Phys. Chem.
72
,
4695
(
1968
).
22.
K.
Moon
,
J. Phys. Chem.
60
,
502
(
1956
).
23.
R.
Burch
,
Trans. Faraday Soc.
66
,
736
(
1970
).
24.
R.
Burch
,
Trans. Faraday Soc.
66
,
749
(
1970
).
25.
H.
Brodoswky
,
Z. Phys. Chem. Neue Folge
44
,
129
(
1965
).
26.
C. D.
Gelatt
, Jr.
,
J. A.
Weiss
and
H.
Ehrenreich
,
Solid State Commun.
17
,
663
(
1975
).
27.
W.
Kley
,
J.
Peretti
,
R.
Rubin
, and
G.
Verdan
,
J. Phys. Paris Colloq.
1
,
28
26
(
1967
).
28.
C.
Wagner
,
Acta Metall.
19
,
843
(
1971
).
29.
Y.
de Ribaupierre
and
F. D.
Manchester
,
J. Phys. C
8
,
1339
(
1975
).
30.
O. J.
Kleppa
,
M. E.
Melnichak
, and
T. V.
Charlu
,
J. Chem. Thermodyn.
5
,
595
(
1973
).
31.
O. J.
Kleppa
,
P.
Dantzer
, and
M. E.
Melnichak
,
J. Chem. Phys.
61
,
4048
(
1974
).
32.
P.
Dantzer
,
O. J.
Kleppa
, and
M. E.
Melnichak
,
J. Chem. Phys.
64
,
139
(
1976
).
33.
C.
Thomas
,
P.
Gerdanian
, and
M.
Dode
,
J. Chim. Phys. Phys. Chim. Biol.
65
,
1349
(
1968
).
34.
JANAF Thermochemical Tables (Dow Chemical, Midland, 1975).
35.
P.
Kofstad
and
W. E.
Wallace
,
J. Am. Chem. Soc.
81
,
5019
(
1959
).
36.
E.
Veleckis
and
R. K.
Edwards
,
J. Phys. Chem.
73
,
683
(
1969
).
37.
A. D.
McQuillan
,
J. Chem. Phys.
53
,
156
(
1970
).
38.
G.
Alefeld
,
Ber. Bunsenges. Phys. Chem.
76
,
746
(
1972
).
39.
H.
Brüning
and
A.
Sieverts
,
Z. Phys. Chem. Abt. A
163
,
409
(
1933
).
40.
T. B.
Flanagan
,
J. F.
Lynch
,
J. D.
Clewley
, and
B.
Von Turkovich
,
Scripta Metall.
9
,
1063
(
1975
).
41.
H.
Buck
and
G.
Alefeld
,
Phys. Status Solidi B
49
,
317
(
1972
).
42.
M.
O’Keeffe
and
S. A.
Steward
,
Ber. Bunsenges. Phys. Chem.
76
,
1278
(
1972
).
43.
B. N.
Ganguly
,
Z. Phys. B
22
,
127
(
1975
).
44.
H. B.
Huntington
,
G. A.
Shirn
, and
E. S.
Wajda
,
Phys. Rev.
99
,
1085
(
1955
).
45.
C. A.
Mackliet
and
A. J.
Schindler
,
Phys. Rev.
146
,
463
(
1966
).
46.
C. A.
Mackliet
,
D. J.
Gillespie
, and
A. I.
Schindler
,
Solid State Commun.
15
,
207
(
1974
).
47.
W. A.
Oates
and
T. B.
Flanagan
,
Solid State Commun.
9
,
1841
(
1971
).
48.
A. P.
Miller
and
B. N.
Brockhouse
,
Can. J. Phys.
49
,
704
(
1971
).
49.
N. F. Mott and H. Jones, The Theory of Metal and Alloys (Clarendon, Oxford, 1936).
50.
B.
Stalinski
,
Ber. Bunsenges. Phys. Chem.
76
,
724
(
1972
).
51.
J.
Bergsma
and
J. A.
Goedkoop
,
Physica (Utr.)
26
,
744
(
1960
).
52.
J. E.
Worsham
,
M. G.
Wilkinson
, and
C. G.
Shull
,
Phys. Chem. Solids
3
,
303
(
1957
).
53.
D. Henderson and S. G. Davidson, in Physical Chemistry, edited by Eyring, Henderson, and Jost, (Academic, New York, 1967), Vol. II, p. 386.
This content is only available via PDF.
You do not currently have access to this content.