A Hamiltonian of the Pariser–Parr–Pople form is employed to investigate the effect of correlation on the π‐electron spectrum of polyenes. Two limiting cases for the electron–electron interaction (short‐ and long‐range limit) are considered, and it is shown that they yield descriptions corresponding to the standard valence‐bond (Dirac–Heisenberg) and molecular‐orbital models, respectively. The intermediate, chemically most interesting, range is examined in detail by means of a full configuration‐interaction treatment with an exponential model potential that includes a variable effective range parameter. It is shown that correlation effects become more important as the effective range of the interaction decreases. The states of polyenes are classified as covalent or noncovalent, and it is found that the former are much more sensitive to correlation than the latter. Configuration interaction through double excitations yields a qualitatively correct ordering for all states in the chemical range, but triple and quadruple excitations are required for quantitative results. Applications to butadiene, hexatriene, and benzene demonstrate that correlation effects in these molecules lead to an important lowering in energy of the manifold of covalent states relative to that of the noncovalent states; most important, the first covalent (1Ag) state of the polyenes is found to be near degenerate with the strongly allowed noncovalent (1B+u) state. Density correlation functions and the fluctuation potential are obtained for the polyenes and used to clarify the nature of the correlation correction. Configuration interaction including double excitations is performed for polyenes through C12H14 to exhibit the length dependence of the correlation effects. It is shown that with increasing chain length, an increasing number of covalent states appears in the energy range of the two usually observed excited 1B+u and 1A+g (cis peak) states.

1.
(a) L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966);
(b) M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw‐Hill, New York, 1969).
2.
(a)
B. S.
Hudson
and
B. E.
Kohler
,
Chem. Phys. Lett.
14
,
299
(
1972
);
(b)
B. S.
Hudson
and
B. E.
Kohler
,
J. Chem. Phys.
59
,
4984
(
1973
).
3.
R. L.
Christensen
and
B. E.
Kohler
,
Photochem. Photobiol.
18
,
293
(
1973
).
4.
K.
Schulten
and
M.
Karplus
,
Chem. Phys. Lett.
14
,
305
(
1972
);
K. Schulten, Thesis, Harvard University, March 1974.
5.
J.
Koutecky
,
J. Chem. Phys.
47
,
1501
(
1967
).
6.
T. H.
Dunning
, Jr.
,
R. P.
Hosteny
, and
I.
Shavitt
,
J. Am. Chem. Soc.
95
,
5067
(
1973
).
7.
(a)
R.
Bonneau
,
J.
Joussot‐Dubien
, and
R.
Bensasson
,
Chem. Phys. Lett.
3
,
353
(
1969
);
(b)
J. B.
Birks
,
Chem. Phys. Lett.
3
,
567
(
1969
);
(c)
A. M.
Taleb
,
I. H.
Munro
, and
J. B.
Birks
,
Chem. Phys. Lett.
21
,
454
(
1973
);
(d) J. B. Birks, Conf. Radiationless Proc., Schliersee, Bavaria, September, 1974 (1975) has stated that the very low‐lying E2g1 state (5.7 eV) is due to a toluene impurity.
8.
A.
Brillante
,
C.
Talliani
, and
C.
Zauli
,
Mol. Phys.
25
,
1263
(
1973
).
9.
S. D.
Allen
and
D.
Schnepp
,
J. Chem. Phys.
59
,
4547
(
1973
).
10.
J.
Downing
,
V.
Dvorak
,
J.
Kolc
,
A.
Manazara
, and
J.
Michl
,
Chem. Phys. Lett.
17
,
70
(
1972
).
11.
J.
Koutecky
,
J.
Cizek
,
J.
Dubsky
, and
K.
Hlavaty
,
Theor. Chim. Acta
2
,
462
(
1964
);
J.
Koutecky
,
J.
Cizek
,
J.
Dubsky
, and
K.
Hlavaty
,
Theor. Chim. Acta
3
,
341
(
1965
).,
Theor. Chim. Acta
12.
J. N.
Murrel
and
K. L.
McEwen
,
J. Chem. Phys.
25
,
1143
(
1956
).
13.
J. E. Bloor, Proc. Chem. Soc. 1960, 413.
14.
N. L.
Allinger
and
J. C.
Tai
,
J. Am. Chem. Soc.
87
,
2081
(
1965
).
15.
P. B.
Visscher
and
L. M.
Falicov
,
J. Chem. Phys.
52
,
4217
(
1970
).
16.
H.
Shinoda
,
H.
Tatematsu
, and
T.
Miyazaki
,
Bull. Chem. Soc. Jpn.
46
,
2950
(
1973
).
17.
J.
Karwowski
,
Chem. Phys. Lett.
18
,
47
(
1973
).
18.
F. W. E. Knoop, Thesis, Leiden, 1972.
19.
C.
Giessner‐Prettre
and
A.
Pullman
,
Theor. Chim. Acta
17
,
120
(
1970
).
20.
J.
Čížek
,
J.
Paldus
, and
I.
Hubac
,
Int. J. Quantum Chem.
8
,
951
(
1974
);
J.
Paldus
,
Int. J. Quantum Chem. Symp.
8
,
293
(
1974
).
21.
(a)
R. P.
Hosteny
,
T. H.
Dunning
,Jr.
,
R. R.
Gilman
,
A.
Pipano
, and
I.
Shavitt
,
J. Chem. Phys.
62
,
4764
(
1975
);
(b)
P. J.
Hay
and
I.
Shavitt
,
J. Chem. Phys.
60
,
2865
(
1974
).
22.
S.
Shih
,
R.
Buenker
, and
S.
Peyerimhoff
,
Chem. Phys. Lett.
16
,
244
(
1972
).
23.
J. H.
Ryan
and
J. L.
Whitten
,
Chem. Phys. Lett.
15
,
119
(
1972
).
24.
C. P.
Bender
,
T. H.
Dunning
, Jr.
,
H. F.
Schaefer
III
,
W. A.
Goddard
III
, and
W. J.
Hunt
,
Chem. Phys. Lett.
15
,
171
(
1972
).
25.
H.
Basch
,
Chem. Phys. Lett.
19
,
323
(
1973
).
26.
E.
Miron
,
B.
Raz
, and
J.
Jortner
,
Chem. Phys. Lett.
6
,
563
(
1970
).
27.
R. S.
Mulliken
,
J. Chem. Phys.
7
,
20
(
1939
);
R. S.
Mulliken
,
Chem. Phys. Lett.
25
,
305
(
1974
).
28.
S.
Iwata
and
K.
Freed
,
Chem. Phys. Lett.
28
,
176
(
1974
).
29.
(a)
M. J. S.
Dewar
and
C.
de Llano
,
J. Am. Chem. Soc.
91
,
789
(
1969
);
(b)
B.
Roos
and
P. N.
Skancke
,
Act. Chem. Scand.
21
,
233
(
1967
).
30.
D. J. Thouless, The Quantum Mechanics of Many‐Body Systems (Academic, New York, 1961);
J.
Čížek
and
J.
Paldus
,
J. Chem. Phys.
47
,
3976
(
1967
).
31.
(a)
J.
Linderberg
and
Y.
Öhrn
,
J. Chem. Phys.
49
,
716
(
1968
);
(b)
L. N.
Bulaevskii
,
Zh. Eksp. Teor. Fiz.
51
,
230
(
1966
)
[
L. N.
Bulaevskii
,
Sov. Phys. JETP
24
,
154
(
1967
)];
W.
Kohn
,
Phys. Rev. Sect. A
133
,
171
(
1964
).
32.
W. J. Campion and M. Karplus (to be published).
33.
O.
Sinanoğlu
,
J. Chem. Phys.
36
,
706
(
1962
).
34.
W. C.
Price
and
A. D.
Walsh
,
Proc. R. Soc. London
174
,
220
(
1940
).
35.
R.
McDiarmid
,
Chem. Phys. Lett.
34
,
130
(
1975
).
36.
R. M.
Gavin
,Jr.
and
S. A.
Rice
,
J. Chem. Phys.
60
,
3231
(
1974
);
see also
M.
Karplus
,
R. M.
Gavin
, Jr.
, and
S. A.
Rice
,
J. Chem. Phys.
63
,
5507
(
1975
).
37.
E. N.
Lasettre
,
A.
Skerbele
,
M. A.
Dillon
, and
K. J.
Ross
,
J. Chem. Phys.
48
,
5066
(
1968
);
E. N.
Lasettre
,
A.
Skerbele
,
M. A.
Dillon
, and
K. J.
Ross
,
J. Chem. Phys.
51
,
476
(
1969
).,
J. Chem. Phys.
38.
H. H. Brongersma, J. A. v.d. Hart, and L. J. Oosterhoff, in Fast Reactions and Primary Processes in Chemical Kinetics, edited by S. Claesson (Interscience, New York, 1967).
39.
F. W. E.
Knoop
and
L. J.
Oosterhoff
,
Chem. Phys. Lett.
22
,
247
(
1973
).
40.
O. M.
Mosher
,
W. M.
Flicker
, and
A.
Kuppermann
,
J. Chem. Phys.
59
,
6502
(
1973
).
41.
J. H.
Moore
, Jr.
,
J. Phys. Chem.
76
,
1130
(
1972
).
42.
D. F. Evans, J. Chem. Soc. 1960, 1735;
ibid.1961, 2566.
43.
D. F. Evans, Optische Anregung Organicher Systeme (Vetlag Chemie, Berlin, 1966), p. 586;
D. F.
Evans
and
J. N.
Tucker
,
J. Chem. Soc. Faraday Trans. 2
68
,
174
(
1972
).
44.
G. W.
King
and
E. H.
Pinnington
,
J. Mol. Spectrosc.
15
,
394
(
1965
).
45.
R. L.
Swofford
and
W. M.
McClain
,
J. Chem. Phys.
59
,
5740
(
1973
).
46.
R. M.
Gavin
, Jr.
,
S.
Risemberg
, and
S. A.
Rice
,
J. Chem. Phys.
58
,
3160
(
1973
).
47.
H. H. Jaffé and M. Orchin, Theory and Application of Ultraviolet Spectroscopy (Wiley, New York, 1962).
48.
P. Nayler and M. C. Whiting, J. Chem. Soc. 1954, 4006;
ibid.1955, 3037.
49.
A. D.
Mebane
,
J. Am. Chem. Soc.
74
,
5227
(
1952
).
50.
A.
Warshel
and
M.
Karplus
,
Chem. Phys. Lett.
32
,
11
(
1975
).
51.
R. B.
Birge
,
K.
Schulten
, and
M.
Karplus
,
Chem. Phys. Lett.
31
,
451
(
1975
).
52.
R. B.
Woodward
and
R.
Hoffmann
,
J. Am. Chem. Soc.
87
,
395
,
2046
(
1965
).
53.
W. Th. A. M.
van der Lugt
and
L. J.
Oosterhoff
,
J. Am. Chem. Soc.
91
,
6042
(
1969
).
54.
E.
Havinga
,
R. J.
de Kock
, and
M. P.
Rappoldt
,
Tetrahedron
11
,
276
(
1960
);
E.
Havinga
and
J. L. M. A.
Schlatmann
,
Tetrahedron
16
,
146
(
1961
).,
Tetrahedron
55.
See, for example, G. E. Brown, United Theory of Nuclear Models and Forces (North‐Holland, Amsterdam, 1967).
This content is only available via PDF.
You do not currently have access to this content.