The critical temperature Tc(n,d) of a classical n‐component spin model with a general continuous spin distribution on a d‐dimensional hypercubic lattice is expanded in inverse powers of d to order 1/d3. The general result differs significantly from the special case of fixed spin length owing to changes in the graphical structure of the high temperature expansion. In the limit n→0 the model becomes identical to the general self‐interacting random walk or polymer problem: The Boltzmann factors for self‐intersections in the walks correspond to the moments of the spin distribution functions, and Tc(0,d) yields the polymer free energy.

1.
P. R.
Gerber
and
M. E.
Fisher
,
Phys. Rev. B
10
,
4697
(
1974
).
2.
M. E.
Fisher
and
D. S.
Gaunt
,
Phys. Rev.
133
,
A224
(
1964
).
3.
H. E.
Stanley
,
Phys. Rev.
176
,
718
(
1968
).
4.
(a)
P. G.
deGennes
,
Phys. Lett. A
38
,
339
(
1972
);
(b)
R. G.
Bowers
and
A.
McKerrell
,
J. Phys. C
6
,
2721
(
1973
).
5.
R.
Balian
and
G.
Toulouse
,
Phys. Rev. Lett.
30
,
544
(
1973
).
6.
M. E.
Fisher
,
Phys. Rev. Lett.
30
,
679
(
1973
).
7.
We acknowledge correspondence with D. Stauffer raising this point.
8.
H. J. F.
Knops
,
Phys. Lett. A
45
,
217
(
1973
).
9.
See, e.g.,
M. E.
Fisher
and
B. J.
Hiley
,
J. Chem. Phys.
34
,
1253
(
1961
).
10.
H. E.
Stanley
and
T. A.
Kaplan
,
Phys. Rev. Lett.
16
,
981
(
1966
).
11.
For graph theory terminology see
J. W.
Essam
and
M. E.
Fisher
,
Rev. Mod. Phys.
42
,
271
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.