The integrodifferential equation which defines a memory function f (t) in terms of the time−correlation function g (t) generates ordered Ursell functions having the cluster property. Thus f (t) has an expansion f(2) (t) + f(3) (t) + ... in which f(n) (t) is an n−1 fold time integral whose integrand vanishes when the interval between any two successive times is much greater than a certain correlation time of the system. An interaction representation is used in deriving these results and it is found that f(n) (t) depends, in a certain sense, upon the nth power of the interaction term H1 of the Hamiltonian. The integrand of f(n) (t) is closely related to the ’’cumulant averaged’’ Liouville operators introduced by Kubo and Tomita and developed further by Kubo, Freed, and van Kampen. Thus, in the Markoffian limit f(2) (t) is simply related to the Redfield relaxation matrix. However, the peculiar time−ordering problems of the cumulant expansion theory do not appear here. Except in very simple cases, all of these results depend upon identifying g (t) as a correlation matrix (Kubo) and the f (t) is the corresponding memory matrix. As a first application the memory function for the EPR relaxation of aqueous Ni++ is calculated in terms of the spin parameters. It is assumed that fluctuating zero−field splitting causes the relaxation, but it is not assumed that the EPR relaxation obeys Bloch’s equations.

1.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
2.
E. Montroll, in Lectures in Theoretical Physics, edited by B. W. Downs and J. Downs (Interscience, New York, 1961), Vol. III, p. 221.
3.
M. S.
Green
,
J. Chem. Phys.
20
,
1281
(
1952
);
M. S.
Green
,
22
,
398
(
1954
).,
J. Chem. Phys.
4.
I. Oppenheim, in Electron Spin Relaxation in Liquids, edited by L. T. Muus and P. W. Atkins (Plenum, New York, 1972) p. 109.
5.
H.
Mori
,
J. Phys. Soc. Jpn.
11
,
209
(
1956
).
6.
B.
Kubo
and
K.
Tomita
,
J. Phys. Soc. Jpn.
9
,
888
(
1954
);
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
1100
(
1962
).,
J. Phys. Soc. Jpn.
7.
J. H.
Freed
,
J. Chem. Phys.
49
,
376
(
1968
).
8.
N. G.
van Kampen
,
Physica
74
,
215
,
239
(
1974
).
9.
G. W.
Parker
and
F.
Lado
,
Phys. Rev. B
8
,
3081
(
1973
).
10.
G.
Reiter
,
Phys. Rev. B
9
,
3780
(
1974
). We are grateful to Dr. Reiter for sending us a copy of this work before publication.
11.
R. Zwanzig, in Lectures in Theoretical Physics, edited by B. W. Downs and J. Downs (Interscience, New York, 1961), Vol. III, p. 106.
12.
H.
Mori
,
Prog. Theor. Phys. Jpn.
33
,
423
(
1965
);
H.
Mori
,
34
,
399
(
1965
).,
Prog. Theor. Phys.
13.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
14.
There is a hierarchy; c numbers (usual meaning), q1 numbers (operators such as H and xj), q2 numbers (superoperators15 such as L and W.) In a basis of eigenfunctions of H the q1 numbers have matrix representations while the q2 numbers have tetradic representations.
15.
L. T. Muus, in Ref. 4, p. 1.
16.
G. E.
Uhlenbeck
and
G. W.
Ford
,
Stud. Stat. Mech.
1
,
123
(
1962
).
17.
G. R.
Stell
,
J. Combinatorial Theory
6
,
7
(
1969
).
18.
A. Abragam, Nuclear Magnetic Resonance (Clarendon, Oxford, 1961).
19.
J. M.
Deutch
and
I.
Oppenheim
,
Adv. Mag. Resonance
3
,
43
(
1968
).
20.
F.
Lado
,
J. D.
Memory
, and
G. W.
Parker
,
Phys. Rev. B
4
,
1406
(
1971
).
21.
D. Kivelson, in Ref. 4, p. 213.
22.
G. F.
Reiter
,
Phys. Rev. B
5
,
222
(
1972
).
23.
N.
Bloembergen
and
L. O.
Morgan
,
J. Chem. Phys.
34
,
842
(
1961
).
24.
A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).
25.
A. G.
Desai
,
H. W.
Dodgen
, and
J. P.
Hunt
,
J. Am. Chem. Soc.
91
,
5001
(
1969
).
26.
W. B.
Lewis
,
M.
Alei
, and
L. O.
Morgan
,
J. Chem. Phys.
44
,
2409
(
1966
).
27.
J. W.
Neeley
and
R. E.
Connick
,
J. Am. Chem. Soc.
94
,
3419
(
1972
).
28.
M.
Rubinstein
,
A.
Baram
, and
Z.
Luz
,
Mol. Phys.
20
,
67
(
1971
).
29.
U.
Lindner
,
Ann. Phys. (Leipz.)
16
,
319
(
1965
).
30.
J. H. E.
Griffiths
and
J.
Owen
,
Proc. R. Soc. A
213
,
459
(
1952
).
31.
W. H.
Furry
,
Phys. Rev.
107
,
7
(
1957
).
32.
L. P.
Hwang
,
C. V.
Krishnan
, and
H. L.
Friedman
,
Chem. Phys. Lett.
20
,
39
(
1973
).
33.
J.
Albers
and
J. M.
Deutch
,
J. Chem. Phys.
55
,
2613
(
1971
).
34.
R. P.
Feynman
,
Phys. Rev.
84
,
108
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.