A mass spectrometric study of ionic reactions in CH4−CF4 and C2H6−CF4 mixtures was undertaken at pressures as high as 0.52 torr. It was found that CF3+ ions react in a hydride transfer process with ethane with a rate constant of 3.3×10−10 cm3 molecule−1⋅s−1. A rate constant of 1.6×10−10 cm3 molecule−1⋅s−1 was determined for the reaction of C2H5+ ions with C2H6. In mixtures of CH4 and CF4, both CH3+ and CH5+ react with CF4, apparently by fluoride ion transfer, for which we calculated rate constants of 8.6×10−10 and 2.3×10−10 cm3 molecule−1⋅s−1, respectively. CF3+ ions do not attack molecular methane. There is good agreement with published rate constants for the disappearance of CH2+, CH3+, and CH4+ ions in pure methane. However we observed a decreasing CH5+ yield above 0.1 torr which may be due either to impurities or to excess energy in CH5+ ions as a result of a relatively high repeller field strength within the ion source in our experiments.

1.
S.
Wexler
,
J. Am. Chem. Soc.
85
,
272
(
1963
).
2.
M. S. B.
Munson
,
F. H.
Field
, and
J. L.
Franklin
,
J. Am. Chem. Soc.
85
,
3584
(
1963
).
3.
R. M.
Haynes
and
P.
Kebarle
,
J. Chem. Phys.
45
,
3899
(
1966
).
4.
V.
Aquilanti
,
A.
Giardini‐Guidoni
,
G. G.
Volpi
, and
F.
Zocchi
,
Int. J. Radiat. Phys. Chem.
2
,
217
(
1970
).
5.
R. A.
Fluegge
,
J. Chem. Phys.
50
,
4373
(
1969
).
6.
F. S.
Kasper
and
J. L.
Franklin
,
J. Chem. Phys.
56
,
1156
(
1972
).
7.
D. P.
Beggs
and
F. H.
Field
,
J. Am. Chem. Soc.
93
,
1567
(
1971
).
8.
T. O.
Tierman
and
P. S.
Gill
,
J. Chem. Phys.
50
,
5042
(
1969
).
9.
M. S. B.
Munson
and
F. H.
Field
,
J. Am. Chem. Soc.
87
,
3294
(
1965
).
10.
S.
Wexler
and
L. G.
Pobo
,
J. Am. Chem. Soc.
93
,
1327
(
1971
).
11.
J.
King
, Jr.
and
D. D.
Elleman
,
J. Chem. Phys.
48
,
412
(
1968
).
12.
R. E.
Marcotte
and
T. O.
Tiernan
,
J. Chem. Phys.
54
,
3385
(
1971
).
13.
T.
Su
,
L.
Kevan
, and
T. O.
Tiernan
,
J. Chem. Phys.
54
,
4871
(
1971
).
14.
C. T. Niessner, “Radiolytic Processes in Gaseous Mixtures of Ethane and Perfluoromethane,” M.S. thesis, East Carolina University, Greenville, NC 27834, 1972.
15.
J. H.
Futrell
,
T. O.
Tiernan
,
F. P.
Abramson
, and
C. D.
Miller
,
Rev. Sci. Instr.
,
39
,
340
(
1968
).
16.
J. W.
Otvos
and
D. P.
Stevenson
,
J. Am. Chem. Soc.
78
,
546
(
1956
).
17.
F. W.
Lampe
,
J. L.
Franklin
, and
F. H.
Field
,
J. Am. Chem. Soc.
79
,
6129
(
1957
).
18.
D.
Rapp
and
P.
Englander‐Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
19.
S. L.
Bennett
,
S. G.
Lias
, and
F. H.
Field
,
J. Phys. Chem.
76
,
3919
(
1972
).
20.
M. S. B.
Munson
,
J. L.
Franklin
, and
F. H.
Field
,
J. Phys. Chem.
68
,
3098
(
1964
).
21.
F. W.
Lampe
,
J. L.
Franklin
, and
F. H.
Field
,
Prog. Reaction Kinetics
1
,
68
(
1961
).
22.
See E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964), pp. 432–436.
23.
C.
Chang
,
G. J.
Sroka
, and
G. G.
Meisels
,
Int. J. Mass Spectrom. Ion Phys.
12
,
411
(
1973
).
C.
Chang
,
G. J.
Sroka
, and
G. G.
Meisels
,
J. Chem. Phys.
55
,
5154
(
1971
);
G.
Sroka
,
C.
Chang
, and
G. G.
Meisels
,
J. Am. Chem. Soc.
95
,
1052
(
1972
).
24.
S. K.
Searles
,
L. W.
Sieck
, and
P.
Ausloos
,
J. Chem. Phys.
53
,
849
(
1970
).
25.
P.
Ausloos
,
R. E.
Rebbert
, and
L. W.
Sieck
,
J. Chem. Phys.
54
,
2612
(
1971
).
26.
T.
McAllister
,
J. Chem. Phys.
56
,
5192
(
1972
).
27.
M. B.
Fallgatter
and
R. J.
Hanrahan
,
J. Phys. Chem.
74
,
2806
(
1970
).
28.
E.
Heckel
and
R. J.
Hanrahan
,
Int. J. Radiat. Phys. Chem.
5
,
281
(
1973
).
29.
J. L.
Franklin
,
J. G.
Dillard
,
H. M.
Rosenstock
,
J. T.
Herron
,
K.
Draxl
, and
F. H.
Field
(Eds.),
Natl. Stand. Ref. Data. Ser., Natl. Bur. Stand. U.S.
26
, (
1969
).
30.
T. A.
Walter
,
C.
Lifshitz
,
W. A.
Chupka
, and
J.
Berkowitz
,
J. Chem. Phys.
51
,
3531
(
1969
).
31.
G. A. W.
Derwish
,
A.
Galli
,
A.
Giardini‐Guidoni
, and
G. G.
Volpi
,
J. Chem. Phys.
40
,
5
(
1964
).
32.
R. C.
Dunbar
,
J.
Shen
, and
G. A.
Olah
,
J. Chem. Phys.
56
,
3794
(
1972
).
33.
F. H. Field and J. L. Franklin, Electron Impact Phenomena (Academic, New York, 1957).
34.
There are several uncertainties in the data available for calculation of the heat of Reaction (28). Using a recent and reliable value of +98.9 kcal/mole for ΔHf °(CF3+)12 and a “low‐side” value of +220 kcal/mole for ΔHf °(CH5+),21,22 we obtain
ΔH °[Reaction (28)] = [ΔHf °(CH4)+ΔHf °(HF)+ΔHf °(CF3+)]−[ΔHf °(CH5+)+ΔHf °(CF4)] = (−17.9−64.8+98.9)−(+220−222) = +18.2 kcal
. If we use all the same data except for ΔHf °(CF3+) and choose that value as +124 kcal, in agreement with the two best values (P.I. and S.L.) of the NSRDS tables, then ΔH °[Reaction (28)] rises to +43.3 kcal. Finally, if we use the original set of data but change ΔHf °(CH5+) to a “high‐side” figure of +230 kcal,21,33 then ΔH °[Reaction (28)] = +8.2 kcal.
35.
F. H.
Field
,
J. L.
Franklin
, and
M. S. B.
Munson
,
J. Am. Chem. Soc.
85
,
3575
(
1963
).
36.
S.
Wesler
and
N.
Jesse
,
J. Am. Chem. Soc.
84
,
3425
(
1962
).
37.
F. H.
Field
and
M. S. B.
Munson
,
J. Am. Chem. Soc.
87
,
3289
(
1965
).
38.
M. S. B.
Munson
and
F. H.
Field
,
J. Am. Chem. Soc.
87
,
3294
(
1965
).
39.
F. P.
Abramson
and
J. H.
Futrell
,
J. Chem. Phys.
45
,
1925
(
1966
).
40.
A.
Giardini‐Guidoni
and
L.
Friedman
,
J. Chem. Phys.
45
,
937
(
1966
).
41.
K.
Yang
and
P. J.
Manno
,
J. Am. Chem. Soc.
81
,
3507
(
1959
).
This content is only available via PDF.
You do not currently have access to this content.