A combined phase‐space/trajectory study of the hydrogen‐iodine exchange reactions (overall, H2+I2→HI+HI) was carried out for a LEPS potential energy surface modified to favor reaction through the collinear reaction configuration. The results show reaction to occur by both bimolecular and termolecular mechanisms involving pairs of iodine atoms with energies slightly below (bimolecular) or slightly above (termolecular) the dissociation limit. Together with other considerations this finding suggests that in stating the reaction proceeds by the bimolecular mechanism the old textbooks may have been correct. A detailed comparison with Sullivan's photochemical experiments requires a knowledge of the iodine‐atom recombination process which is not presently available. Sullivan's primary conclusion, i.e., the iodine species participating in the exchange reaction are the same as those in the slow step of recombination, is upheld; but, the experimental distinction between bimolecular and termolecular mechanisms depends on the question of the relative rates of recombination and relaxation of iodine.

1.
J. H.
Sullivan
,
J. Chem. Phys.
46
,
73
(
1967
).
2.
We use the term (I+I) for I‐atom pairs with internal energy greater than the dissociation energy which are not trapped by the rotational barrier to dissociation. Quasibound pairs I2(qb) have internal energy greater than the dissociation energy and are trapped within the rotational barrier. Sullivan’s I2* includes both (I+I) and I2(qb). Bound I2 molecules with internal energies less than the dissociation energy are identified by I2 or I2(b) and more specfic terms: I2(hi v), I2(lo v).
3.
L. C.
Cusachs
,
M.
Krieger
, and
C. W.
McCurdy
,
J. Chem. Phys.
49
,
3740
(
1968
).
4.
F. L.
Minn
and
A. B.
Hanratty
,
J. Chem. Phys.
53
,
2543
(
1970
);
F. L.
Minn
and
A. B.
Hanratty
,
Theoret. Chim. Acta
19
,
390
(
1970
).
5.
R.
Hoffmann
,
J. Chem. Phys.
49
,
3739
(
1968
).
6.
R. N.
Porter
and
L. M.
Raff
,
J. Chem. Phys.
50
,
5216
(
1969
).
7.
L. M.
Raff
and
R. N.
Porter
,
J. Chem. Phys.
51
,
4701
(
1969
).
8.
L. M.
Raff
,
L.
Stivers
,
R. N.
Porter
,
D. L.
Thompson
, and
L. B.
Sims
,
J. Chem. Phys.
52
,
3449
(
1970
).
9.
L. M.
Raff
,
D. L.
Thompson
,
L. B.
Sims
, and
R. N.
Porter
,
J. Chem. Phys.
56
,
5998
(
1972
).
10.
R. L. Jaffe, J. M. Henry, and J. B. Anderson, “Molecular Dynamics of the Hydrogen Iodide and Hydrogen‐Iodine Exchange Reactions” (unpublished).
11.
J. M.
Henry
,
R. L.
Jaffe
, and
J. B.
Anderson
,
Chem. Phys. Lett.
20
,
138
(
1973
).
12.
J. B.
Anderson
,
J. M.
Henry
, and
R. L.
Jaffe
,
J. Chem. Phys.
60
,
3725
(
1974
).
13.
J. B.
Anderson
and
R. T. V.
Kung
,
J. Chem. Phys.
58
,
2477
(
1973
);
J. B.
Anderson
and
R. T. V.
Kung
,
60
,
2202
(
1974
).,
J. Chem. Phys.
14.
R. N. Porter, D. L. Thompson, L. M. Raff, and J. M. White, “Comparison of the Combined Phase‐Space Trajectory and Quasiclassical Trajectory Methods in the Study of Reaction Dynamics: H+I2 and H+Br2,” J. Chem. Phys. (to be published).
15.
J. D.
McDonald
,
P. R.
Le Breton
,
Y. T.
Lee
, and
D. R.
Herschbach
,
J. Chem. Phys.
56
,
769
(
1972
).
16.
Y. T. Lee (private communication, 1974).
17.
The reactive pairs (I+I) include only those in the Σ1 electronic state, approximately 1/16 of the total.
18.
For reviews, see (a) D. L. Bunker, Theory of Elementary Gas Reaction Rates (Pergamon, Oxford, England, 1966), p. 76ff;
(b) H. S. Johnston, Gas Phase Reaction Rate Theory (Ronald Press, New York, 1966), p. 253 ff.
19.
W. H.
Wong
and
G.
Burns
,
J. Chem. Phys.
58
,
4459
(
1973
).
20.
J. K. K.
Ip
and
G.
Burns
,
J. Chem. Phys.
56
,
3155
(
1972
).
21.
D. L.
Bunker
and
N.
Davidson
,
J. Am. Chem. Soc.
80
,
5085
(
1958
).
22.
R.
Engleman
and
N.
Davidson
,
J. Am. Chem. Soc.
82
,
4770
(
1960
).
23.
J. I.
Steinfeld
and
W.
Klemperer
,
J. Chem. Phys.
42
,
3475
(
1965
).
24.
D. L.
Bunker
and
N.
Davidson
,
J. Am. Chem. Soc.
80
,
5090
(
1958
).
This content is only available via PDF.
You do not currently have access to this content.