A new approach to studying diffusion in liquid crystals is described in which the optically observable textural changes in a nematic phase caused by a cholesteric diffusant gives direct visualization of the concentration gradient. Utilizing either homeotropic of homogeneous alignments under different boundary conditions, and with and without an applied magnetic field, the parallel and perpendicular components of the diffusivity have been determined for a cholesteryl ester diffusing into N‐(p ‐methoxybenzylidene)‐pn ‐butylaniline as a function of temperature. The diffusion coefficients in the isotropic phase can also be determined by annealing at a high temperature and quenching to room temperature, whereupon the cholesteric texture is again developed. Values of the diffusion coefficients and the activation energies of the diffusion process are discussed and compared to other available data.

1.
See, for example, P. Martinoty and S. Candau, Liquid Crystals 3, Part II, edited by G. H. Brown and M. M. Labes (Gordon and Breach, London, 1972), p. 881. This paper relates viscosity coefficients to continuum theory as developed by J. L. Ericksen and F. M. Leslie.
2.
T.
Svedberg
,
Kolloid‐Z.
22
,
68
(
1918
).
3.
T.
Svedberg
,
Kolloid‐Z.
18
,
54
,
101
(
1916
).
4.
T.
Svedberg
,
Kolloid‐Z.
21
,
19
(
1917
).
5.
G. T.
Stewart
,
Nature (Lond.)
183
,
873
(
1959
).
6.
C.
Robinson
,
Trans. Faraday Soc.
62
,
571
(
1956
).
7.
M. M.
Labes
,
Nature (Lond.)
211
,
968
(
1966
).
8.
G. T.
Stewart
,
Mol. Cryst. Liq. Cryst.
7
,
75
(
1969
).
9.
K. D.
Lawson
and
T. J.
Flautt
,
J. Am. Chem. Soc.
89
,
5489
(
1967
).
10.
For example, see
E. F.
Carr
,
Adv. Chem. Ser.
63
,
76
(
1967
).
11.
G.
Durand
,
L.
Leger
,
F.
Rondelez
, and
M.
Veyssie
,
Phys. Rev. Lett.
22
,
227
(
1967
);
R. B.
Meyer
,
Appl. Phys. Lett.
14
,
208
(
1969
);
T. M.
Laronge
,
H.
Baessler
, and
M. M.
Labes
,
J. Chem. Phys.
51
,
4186
(
1969
).
12.
I.
Teucher
,
H.
Baessler
, and
M. M.
Labes
,
Nat. Phys. Sci.
229
,
25
(
1971
).
13.
W. Franklin, Liquid Crystals 3, Part II, edited by G. H. Brown and M. M. Labes (Gordon and Breach, London, 1972), p. 1125;
also in
Mol. Cryst. Liq. Cryst.
14
,
227
(
1971
).
14.
R.
Blinc
,
V.
Dimic
,
J.
Pirs
,
M.
Vilfan
, and
I.
Zupancic
,
Mol. Cryst. Liq. Cryst.
14
,
97
(
1971
).
15.
R.
Blinc
and
V.
Dimic
,
Phys. Lett. A
31
,
531
(
1970
).
16.
J. A.
Janik
,
J. M.
Janik
,
K.
Otnes
, and
T.
Ristle
,
Mol. Cryst. Liq. Cryst.
15
,
189
(
1971
).
17.
K.
Otnes
,
R.
Pynn
,
J. A.
Janik
, and
J. M.
Janik
,
Phys. Lett. A
38
,
335
(
1972
).
18.
R.
Blinc
,
D. L.
Hogenboom
,
D. E.
O’Reilly
, and
E. M.
Peterson
,
Phys. Rev. Lett.
23
,
969
(
1969
).
19.
J. A.
Murphy
and
J. W.
Doane
,
Mol. Cryst. Liq. Cryst.
13
,
93
(
1971
);
J. A.
Murphy
and
J. W.
Doane
, erratum in
Mol. Cryst. Liq. Cryst.
15
, No.
2
, (
1971
).
20.
R. Y.
Dong
,
W. F.
Forbes
, and
M. M.
Pintar
,
Solid State Commun.
9
,
151
(
1971
).
21.
J. A.
Murphy
,
J. W.
Doane
,
Y. Y.
Hsu
, and
D. L.
Fishel
,
Mol. Cryst. Liq. Cryst.
22
,
133
(
1973
).
22.
S. R.
Ghosh
and
E.
Tettamanti
,
Phys. Lett. A
34
,
361
(
1973
).
23.
R.
Blinc
,
J.
Pirs
, and
I.
Zupancic
,
Phys. Rev. Lett.
30
,
546
(
1973
).
24.
C. K.
Yun
and
A. G.
Fredrickson
,
Mol. Cryst. Liq. Cryst.
12
,
73
(
1970
).
25.
H.
Hakemi
and
M. M.
Labes
,
J. Chem. Phys.
58
,
1318
(
1973
).
26.
J. L.
Janning
,
Appl. Phys. Lett.
21
,
173
(
1972
).
27.
See, for example, P. Kassubek, and G. Meier, Liquid Crystals 2, Part II, edited by G. H. Brown (Gordon and Breach, London, 1972), p. 753.
28.
H.
Gruler
and
G.
Meier
,
Mol. Cryst. Liq. Cryst.
16
,
299
(
1972
).
29.
I.
Rault
and
P. E.
Cladis
,
Mol. Cryst. Liq. Cryst.
16
,
1
(
1971
).
30.
J. Crank, The Mathematics of Diffusion, Oxford U.P., London, 1956), p. 11, 27–29.
31.
Another way of evaluating D from Eq. (4) is as follows: if one considers any three successive lines k, k+1, and k+2 at distances xk,xk+1, and xk+2, and can eliminate the integer value k from Eq. (4) and obtain the equation e−αy+eβy = 2. Here, α and β are the measured values (xk2−xk+12) and (xk+12−xk+22), respectively, and y = 1/4Dt. By a simple computer program, values of D were obtained in this way and agreed well with the values obtained from the slope of the lnk vs xk2 relationship.
32.
M. H.
Cohen
and
D.
Turnbull
,
J. Chem. Phys.
31
,
1164
(
1959
).
33.
C. H.
Lee
,
H. K.
Kevorkian
,
P. J.
Reucroft
, and
M. M.
Labes
,
J. Chem. Phys.
42
,
1406
(
1965
).
34.
A. R.
McGhie
,
H.
Blum
, and
M. M.
Labes
,
J. Chem. Phys.
52
,
6141
(
1970
).
35.
G.
Burns
and
J. N.
Sherwood
,
Mol. Cryst. Liq. Cryst.
18
,
91
(
1972
).
36.
E.
Hampton
,
N. C.
Lockhart
, and
J. N.
Sherwood
,
Chem. Phys. Lett.
21
,
191
(
1973
).
37.
D.
Dolphin
,
Z.
Muljiani
,
J.
Cheng
, and
R. B.
Meyer
,
J. Chem. Phys.
58
,
413
(
1973
).
38.
F.
Rondelez
,
Solid State Commun.
14
,
815
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.