The static dielectric constant of H2O and D2O have been measured at 10, 25, and 40°C at pressures up to 3 kbar by a bridge method. An all‐glass, three‐terminal, Kay‐Vidulich‐type dielectric cell was designed specifically for these high pressure measurements and was used in conjunction with a bridge that was equipped with a capacitance‐inductance free, conductance balancing network. The structurally significant quantities gKμ2 and gK, the Kirkwood correlation factor, were evaluated from the experimental data and the Fröhlich equation. Their pressure dependence and the structural implications are analyzed in detail.

1.
S.
Kyropoulos
,
Z. Phys.
40
,
507
(
1926
).
2.
B. K. P.
Scaife
,
Proc. Phys. Soc. Lond.
B68
,
790
(
1955
).
3.
K. Tödheide, in Water: A Comprehensive Treatise, Volume I. Physics and Physical Chemistry of Water, edited by F. Franks (Plenum, New York, 1972), Chap. 13.
4.
E. U.
Franck
,
J. Solution Chem.
2
,
339
(
1973
).
5.
L. A.
Dunn
and
R. H.
Stokes
,
Trans. Faraday Soc.
65
,
2906
(
1969
).
6.
B. B.
Owen
,
R. C.
Miller
,
C. E.
Milner
, and
H. L.
Cogan
,
J. Phys. Chem.
65
,
2065
(
1961
).
7.
W. L. Lees, Ph.D. thesis, Harvard University, 1949.
8.
G. A.
Vidulich
,
D. F.
Evans
, and
R. L.
Kay
,
J. Phys. Chem.
71
,
656
(
1967
).
9.
C. G.
Malmberg
and
A. A.
Maryott
,
J. Res. Natl. Bur. Stand.
56
,
1
(
1956
).
10.
F. H. Stillinger and A. Ben‐Nairn, in Water and Aqueous Solutions, edited by R. A. Horne (Wiley‐Interscience, New York, 1971), Chap. 8.
11.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
12.
G.
Oster
and
J. G.
Kirkwood
,
J. Chem. Phys.
11
,
175
(
1943
).
13.
J. A.
Pople
,
Proc. Roy. Soc. Lond.
A205
,
163
(
1951
).
14.
J. B. Hasted, see Ref. 3, Chap. 7.
15.
G. H.
Haggis
,
J. B.
Hasted
, and
T. J.
Buchanan
,
J. Chem. Phys.
20
,
1452
(
1952
).
16.
E. T.
Brok‐Levinson
,
V. B.
Nemtsov
, and
L. A.
Rott
,
Russ. J. Phys. Chem.
45
,
7
(
1971
).
17.
E. U.
Franck
and
V. M.
Jansoone
,
Ber. Bunsenges. Phys. Chem.
76
,
943
(
1972
).
18.
M. S.
Wertheim
,
J. Chem. Phys.
55
,
4291
(
1971
).
19.
J. A.
Pople
and
J.
Del Bene
,
J. Chem. Phys.
52
,
4858
(
1970
).
20.
(a)
D.
Hankins
,
J. W.
Moskovitz
, and
F. H.
Stillinger
,
J. Chem. Phys.
53
,
4544
(
1970
);
(b)
E.
Clementi
and
H.
Popkie
,
J. Chem. Phys.
57
,
1077
(
1972
).
21.
G. A.
Vidulich
and
R. L.
Kay
,
Rev. Sci. Instrum.
37
,
1662
(
1966
).
22.
We are indebted to Dr. W. A. Adams for an early suggestion as to how to build these cells without metal‐to‐glass seals. The cells have since undergone further modification to arrive at the simple design shown in Fig. 1.
23.
K. R. Srinivasan, Ph.D. thesis, Carnegie‐Mellon University, 1972.
24.
R. L.
Kay
and
K. S.
Pribadi
,
Rev. Sci. Instrum.
40
,
726
(
1969
).
25.
R. L.
Kay
,
K. S.
Pribadi
, and
B.
Watson
,
J. Phys. Chem.
74
,
2724
(
1970
).
26.
A. short piece of fluorinated copolymer of ethylene and propylene (FEP, Pope Scientific) which melts readily at 290 °C is placed between the glass and the shrinkable Teflon sleeve. On heating, the inner sleeve melts and the outer sleeve shrinks to form a tight flexible seal.
27.
R. L.
Kay
and
D. F.
Evans
,
J. Phys. Chem.
69
,
4216
(
1965
).
28.
J.
Adams
,
J. Am. Chem. Soc.
53
,
3769
(
1931
).
29.
The measured values of the dielectric constants can be found in Ref. 23.
30.
H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, England, 1958), 2nd ed.
31.
G. S.
Kell
and
E.
Whalley
,
Philos. Trans. R. Soc. Lond.
258
,
565
(
1965
).
32.
C. W.
Burnham
,
J. R.
Holloway
, and
N. F.
Davis
,
Am. J. Sci.
267A
,
70
(
1969
).
33.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
49
,
3
(
1931
).
34.
H.
Eisenberg
,
J. Chem. Phys.
43
,
3887
(
1965
).
35.
K. E.
Bett
and
J. B.
Cappi
,
Nature
207
,
620
(
1965
).
36.
I. S.
Jacobs
and
A. W.
Lawson
,
J. Chem. Phys.
20
,
1161
(
1952
).
37.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
57
,
1281
(
1972
).
38.
F. H. Stillinger (private communication, 1972).
This content is only available via PDF.
You do not currently have access to this content.