Carbon and chlorine analyses of the linear chain compound Ir(CO)3Cl confirm the report by Krogmann et al. that it is partially oxidized. The results are consistent with the formulation Ir(CO)3−xCl1+x(x = 0.08 ± 0.02) or Ir(CO)3Cl1+x(x = 0.10 ± 0.03). The latter formulation is preferred because recoilless absorption measurements of the 73 keV 193Ir γ‐ray show no indication of a line attributable to a species other than partially oxidized Ir(CO)3Cl units. Presumably the ``extra'' chloride occurs in disordered interchain positions. The Mössbauer absorption is a temperature independent (1.8 – 35 °K) doublet with isomer shift − 0.03 ± 0.01 mm/sec relative to iridium metal and quadrupole splitting 2.11 ± 0.02 mm/sec. For 4.3 ≤ T < 25 °K, the molar magnetic susceptibility corrected for ligand and metal core diamagnetism, χM, follows the Curie law χM′ = 38 × 10−6 + (6.79 × 10−4)/T; for 25 < T ≤ 280 °K, the susceptibility is given by χM′ = 25 × 10−6 + (1.03 × 10−3)/T. The susceptibility and Mössbauer results indicate that in the range 1.8–280 °K the charges arising from partial oxidation of Ir(CO)3Cl chains are not localized on individual atoms. The results are therefore inconsistent with a model requiring transition from a metallic state to a smallbandgap magnetic Mott insulator, but can be accounted for in terms of the interrupted metal strand model or the one‐dimensional disorder model. For the latter, the Curie contribution to the susceptibility leads to an estimate that the disorder ``localized'' states are spread over ∼ 25 Ir atoms. If the Curie component of the susceptibility is assigned to paramagnetic structure defects, the results are also consistent with the model in which a high‐temperature metallic state undergoes a continuous transition to a low temperature Peierls band insulator. The origin of the discontinuity at T ≈ 25 °K in the slope of the T−1 dependence of χM is at present unknown.

1.
For a review see
K.
Krogmann
,
Agnew. Chem. (Int. Ed. Engl.)
8
,
35
(
1969
).
2.
W. A.
Little
,
Phys. Rev. A
134
,
1416
(
1964
).
3.
A. S.
Berenblyum
,
L. I.
Buravov
,
M. D.
Khidekel
,
I. F.
Shohegolev
, and
E. B.
Yakimov
,
Zh. Eksp. Teor. Fiz. Pis’ma Red.
13
,
619
(
1971
)
[
A. S.
Berenblyum
,
L. I.
Buravov
,
M. D.
Khidekel
,
I. F.
Shohegolev
, and
E. B.
Yakimov
,
JETP Lett.
13
,
440
(
1971
)].
4.
D.
Kuse
and
H. R.
Zeller
,
Phys. Rev. Lett.
27
,
1060
(
1971
).
5.
A. N.
Bloch
,
R. B.
Weisman
, and
C. M.
Varma
,
Phys. Rev. Lett.
28
,
753
(
1972
).
6.
J. H.
Perlstein
,
M. J.
Minot
, and
V.
Walatka
,
Mater. Res. Bull.
7
,
309
(
1972
).
7.
H. R.
Zeller
,
Phys. Rev. Lett.
28
,
1452
(
1972
).
8.
E.
Ehrenfreund
,
S.
Etemad
,
L. B.
Coleman
,
E. F.
Rybaczewski
,
A. F.
Garito
, and
A. J.
Heeger
,
Phys. Rev. Lett.
29
,
269
(
1972
).
9.
J. W.
McKenzie
,
C.
Wu
, and
R. H.
Bube
,
Appl. Phys. Lett.
21
,
187
(
1972
).
10.
M. A.
Butler
,
D. L.
Rousseau
, and
D. N. E.
Buchanan
,
Phys. Rev. B
7
,
61
(
1973
).
11.
V. K.
Shante
,
C. M.
Varma
, and
A. N.
Bloch
,
Phys. Rev. B
8
,
4885
(
1973
).
12.
A. N.
Bloch
and
C. M.
Varma
,
J. Phys. C
6
,
1849
(
1973
).
13.
K.
Krogmann
,
W.
Binder
, and
H. D.
Hausen
,
Angew. Chem. (Int. Ed. Engl.)
7
,
812
(
1968
).
14.
W.
Hieber
,
H.
Lagally
, and
A.
Mayr
,
Z. Anorg. Allg. Chem.
246
,
138
(
1941
).
15.
E. O.
Fischer
and
K. S.
Brenner
,
Z. Naturforsch. B
17
,
774
(
1962
).
16.
C. G.
Pitt
,
L. K.
Monteith
,
L. F.
Ballard
,
J. P.
Collman
,
J. C.
Morrow
,
W. R.
Roper
, and
D.
Ülkü
,
J. Am. Chem. Soc.
88
,
4286
(
1966
).
17.
K.
Krogmann
and
H. D.
Hausen
,
Z. Anorg. Chem.
358
,
67
(
1968
).
18.
M. L.
Moreau‐Colin
,
Bull. Soc. R. Sci. Liege
34
,
778
(
1965
),
cited in
T. W.
Thomas
and
A. E.
Underhill
,
Chem. Soc. Rev.
1
,
99
(
1972
).
19.
F. N.
Lecrone
,
M. J.
Minot
, and
J. H.
Perlstein
,
Inorg. Nucl. Chem. Lett.
8
,
173
(
1972
).
20.
In support of this conclusion, we note that Professor L. F. Dahl (personal communication) informs us that mass spectra of iridium carbonyl chloride show no evidence of fragments with more than one Cl atom per iridium atom.
21.
F.
Cariati
,
V.
Valenti
, and
G.
Zerbi
,
Inorg. Chim. Acta
3
,
378
(
1969
).
22.
Low chlorine analyses are obtained if the sample is not protected from contact with moisture in the air. This may be the reason why the analytical results reported by Hieber et al.14 and by Fischer and Brenner15 agreed with the formulation Ir(CO)3Cl.
23.
F.
Wagner
and
U.
Zahn
,
Z. Phys.
233
,
1
(
1970
).
24.
None of the spectra of Ir(CO)3Cl showed any indication of the presence of Ir4(CO)12. The Mössbauer spectrum of the latter compound, a likely by‐product in the preparation of Ir(CO)3Cl, is a symmetric doublet with IS+0.26±0.01 mm/sec and quadrupole splitting 1.57±0.01 mm/sec.
25.
H. H.
Wickman
and
W. E.
Silverthorn
,
Inorg. Chem.
10
,
2333
(
1971
).
26.
N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, (Chapman and Hall, London, 1971), p. 183.
27.
U.
Atzmony
,
E. R.
Bauminger
,
D.
Lebenbaum
,
A.
Mustachi
,
S.
Ofer
, and
J. H.
Wernick
,
Phys. Rev.
163
,
314
(
1967
).
28.
W.
Rüegg
,
D.
Kuse
, and
H. R.
Zeller
,
Phys. Rev. B
8
,
952
(
1973
).
29.
We used χd(Ir+) = −50×10−6 and χd(Cl) = −26×10−6, from P. W. Selwood, Magnetochemistry, (Interscience, New York, 1956), 2nd ed., p. 78,
and χd(CO) = −9.8×10−6, from G. W. Smith, Supplement to “A Compilation of Diamagnetic Susceptibilities of Organic Compounds,” General Motors Research Laboratories Report GMR‐396, January 1963.
30.
A.
Menth
and
M. J.
Rice
,
Solid State Commun.
11
,
1025
(
1972
).
31.
A. J.
Epstein
,
S.
Etemad
,
A. F.
Garito
, and
A. J.
Heeger
,
Phys. Rev. B
5
,
952
(
1972
).
32.
B.
Renker
,
H.
Rietschel
,
L.
Pintschovius
,
W.
Gläser
,
P.
Brüesch
,
D.
Kuse
, and
M. J.
Rice
,
Phys. Rev. Lett.
30
,
1144
(
1973
).
33.
R.
Comès
,
M.
Lambert
,
H.
Launois
, and
H. R.
Zeller
,
Phys. Rev. B
8
,
571
(
1973
).
34.
N. F.
Mott
,
Philos. Mag.
24
,
935
(
1971
).
35.
N. F.
Mott
,
Philos. Mag.
20
,
1
(
1969
).
36.
F. DiSalvo (unpublished results).
This content is only available via PDF.
You do not currently have access to this content.