A method based on the symmetry of bonding directions i = 1, 2, …, n is introduced to estimate the critical probability pc in bond percolation problems. The leading terms in the critical equation Q(p1, p2,…, pi,…, pn) = 1 are derived for some two‐ and three‐dimensional lattices and consequently pc can be evaluated by setting all pi's equal. In two dimensions the three exact, known values of pc are regained in addition to an estimate for the kagome lattice pc≃0.535. In three dimensions a one‐parameter fitting to diamond and bcc lattices gives for simple cubic lattice the estimate pc ≃ 0.258 in agreement with its lower limit 1/4.

1.
V. K. S.
Shante
and
S.
Kirkpatrick
,
Advan. Phys
,
20
,
325
(
1971
).
2.
V. A.
Vyssotsky
,
S. B.
Gordon
,
H. L.
Frisch
, and
J. M.
Hammersley
,
Phys. Rev.
123
,
1566
(
1961
).
3.
D. G.
Neal
,
Proc. Cambridge, Phil. Soc.
71
,
97
(
1972
).
4.
M. F.
Sykes
and
J. W.
Essam
,
Phys. Rev.
133
,
A310
(
1964
).
5.
M. F.
Sykes
and
J. W.
Essam
,
Phys. Rev. Lett.
10
,
3
(
1963
).
6.
M. F.
Sykes
and
J. W.
Essam
,
J. Math. Phys.
5
,
1117
(
1964
).
7.
M. E.
Fisher
and
J. W.
Essam
,
J. Math. Phys.
2
,
609
(
1961
).
8.
P.
Dean
,
Proc. Cambridge Phil. Soc.
59
,
397
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.