The binding energies of selected C, N, O, and F 1s electrons in six paramagnetic molecules were measured by x‐ray photoemission. A splitting of 1.934(41) eV was observed in the N(1s) line of NF2, and several other splittings were remeasured or obtained by fitting asymmetric but unresolved lines. Use of the Mg Kα12 doublet profile in fitting improved the fits markedly. A multiplet hole theory was developed to predict the final‐state multiplet splitting. It uses atomic exchange integrals, INDO calculations on an ``equivalent‐core'' final state to obtain spin densities, and Van Vleck's Theorem to account correctly for multiplicity. It gives results in very good agreement with experiment, and it can be used for larger molecules. During photoemission spin density migrates away from the 1s hole in most cases, and electronic charge flows toward this hole, affecting both the 1s splitting and the 1s binding energy. The lower N(1s) binding energy in di‐t ‐butylnitroxide than in NO arises from electron flow to nitrogen from the t ‐butyl group during photoemission. This inductive effect is closely related to the ease of substitution of nucleophilic groups in unimolecular reactions with tertiary alkyl halides, a phenomenon that must also be understood in terms of final‐ (or transition‐) state properties, rather than simply in terms of the initial state. Inequivalent fluorines in N2F4 were identified by an unresolved doublet structure in the F(1s) peak.

1.
M. I. Al‐Joboury and D. W. Turner, J. Chem. Soc. (Lond.) 1964, 4434.
2.
D. W.
Turner
and
D. P.
May
,
J. Chem. Phys.
45
,
471
(
1966
).
3.
P.
Natalis
and
J. E.
Collin
,
Chem. Phys. Lett.
2
,
79
(
1968
).
4.
C. R.
Brundle
,
Chem. Phys. Lett.
5
,
410
(
1970
).
5.
A. B.
Cornford
,
D. C.
Frost
,
F. G.
Herring
, and
C. A.
McDowell
,
Chem. Phys. Lett.
10
,
345
(
1971
).
6.
A. B.
Cornford
,
D. C.
Frost
,
F. G.
Herring
, and
C. A.
McDowell
,
J. Chem. Phys.
54
,
1872
(
1971
).
7.
I.
Morishima
,
K.
Yoshikawa
,
T.
Yonezawa
, and
H.
Matsumoto
,
Chem. Phys. Lett.
16
,
336
(
1972
).
8.
D. A.
Shirley
,
Adv. Chem. Phys.
23
,
85
(
1973
).
9.
It need not always be this simple, see, e.g., Ref. 35.
10.
J.
Hedman
,
P.‐F.
Hedén
,
C.
Nordling
, and
K.
Siegbahn
,
Phys. Lett. A
29
,
178
(
1969
).
11.
C. S.
Fadley
and
D. A.
Shirley
,
Phys. Rev. A
2
,
1109
(
1970
).
12.
C. S.
Fadley
,
D. A.
Shirley
,
A. G.
Freeman
,
P. S.
Bagus
, and
J. V.
Mallow
,
Phys. Rev. Lett.
23
,
1397
(
1969
).
13.
D. T.
Clark
and
D. B.
Adams
,
Chem. Phys. Lett.
10
,
121
(
1971
).
14.
M. V.
Zeller
and
R. G.
Hayes
,
Chem. Phys. Lett.
10
,
610
(
1971
).
15.
A.
Rosencwaig
,
G. K.
Wertheim
, and
G. J.
Guggenheim
,
Phys. Rev. Lett.
27
,
479
(
1971
).
16.
G. K.
Wertheim
and
A.
Rosencwaig
,
Chem. Phys. Lett.
54
,
3235
(
1971
).
17.
D. C.
Frost
,
C. A.
McDowell
, and
I. S.
Woolsey
,
Chem. Phys. Lett.
17
,
320
(
1972
).
18.
J. C.
Carver
,
G. K.
Schweitzer
, and
T. A.
Carlson
,
J. Chem. Phys.
57
,
973
(
1972
).
19.
G. Brodén, S. B. M. Hagström, P.‐O. Hedén, and C. Norris, Spec. Publ. Natl. Bur. Stand. (U.S.) 323, (1971).
20.
P.‐O.
Hedén
,
H.
Lofgren
, and
S. B. M.
Hagström
,
Phys. Rev. Lett.
26
,
432
(
1971
).
21.
S. B. M. Hagström, in Electron Spectroscopy, edited by D. A. Shirley (North‐Holland, Amsterdam, 1972), p. 515.
22.
G.
Brodén
,
S. B. M.
Hagström
, and
C.
Norris
,
Phys. Rev. Lett.
24
,
1173
(
1971
).
23.
D. W.
Davis
and
D. A.
Shirley
,
J. Chem. Phys.
56
,
669
(
1972
).
24.
J. A.
Pople
,
D. L.
Beveridge
, and
P. A.
Dobosh
,
J. Am. Chem. Soc.
90
,
4201
(
1968
).
25.
D. W.
Davis
,
J. M.
Hollander
,
D. A.
Shirley
, and
T. D.
Thomas
,
J. Chem. Phys.
52
,
3295
(
1970
).
26.
L.
Harris
and
K.
Churney
,
J. Chem. Phys.
47
,
1703
(
1967
).
27.
R. K.
Bohn
and
S. H.
Bauer
,
Inorg. Chem.
6
,
304
(
1967
).
28.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
29.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
42
,
571
(
1964
).
30.
J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory (McGraw‐Hill, New York, 1970).
31.
T.
Koopmans
,
Physica (Utr.)
1
,
104
(
1933
).
32.
R. E. Watson and A. J. Freeman, in Hyperfine Interactions, edited by A. J. Freeman and R. B. Frankel (Academic, New York, 1967).
33.
H.
Basch
,
Chem. Phys. Lett.
20
,
233
(
1973
).
34.
J. A.
Pople
,
D. L.
Beveridge
, and
P. A.
Dobosh
,
J. Chem. Phys.
44
,
3289
(
1966
).
35.
A. J. Freeman, P. S. Bagus, and J. V. Mallow (private communication).
See also
P. S.
Bagus
,
A. J.
Freeman
, and
F.
Sasaki
,
Phys. Rev. Lett.
30
,
851
(
1973
).
36.
J. H.
Van Vleck
,
Phys. Rev.
45
,
405
(
1934
).
37.
A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance (Harper and Row, New York, 1967).
38.
W. L.
Jolly
and
D. N.
Hendrickson
,
J. Am. Chem. Soc.
92
,
1863
(
1970
).
39.
D. W.
Davis
and
D. A.
Shirley
,
Chem. Phys. Lett.
15
,
185
(
1972
).
40.
All theoretical values for spin densities were obtained from INDO wavefunctions with annihilation of the highest contaminating spin component (see Ref. 41a). Although spin annihilation rarely made more than a 0.05 eV correction (the lone exception was NF2), the multiplet splittings obtained this way did generally correlate more closely with experiment, for all the theoretical methods, than did the unannihilated wavefunctions. The atomic exchange integrals were taken from Ref. 41b.
41.
(a)
D. L.
Beveridge
and
P. A.
Dobosh
,
J. Chem. Phys.
48
,
5532
(
1968
);
(b) J. B. Mann, “Atomic Structure Calculations. I. Hartree‐Fock Energy Results for the Elements Hydrogen to Lawrencium,” Los Alamos Scientific Laboratory Report LA‐3690.
42.
P. S.
Bagus
and
H. F.
Schaeffer
III
,
J. Chem. Phys.
56
,
224
(
1972
).
43.
P. S.
Bagus
and
H. F.
Schaeffer
III
,
J. Chem. Phys.
55
,
1474
(
1972
).
44.
M. E.
Schwartz
,
Chem. Phys. Lett.
5
,
50
(
1970
).
45.
The exponents for the Slater type orbitals used in the calculation were taken from
E.
Clementi
and
D. L.
Raimondi
,
J. Chem. Phys.
38
,
2686
(
1963
).
46.
It now appears that alkyl groups stabilize both positive and negative saturated ions in the gas phase relative to hydrogen. The concept of an alkyl group stabilizing a positive charge through inductive electron donation may thus be lost. Brauman and Blair have postulated that the stabilization arises from the polarizability of the alkyl group and its proximity to the charged center. Whatever the mechanism, the effect still remains. See, e.g.,
Brauman
and
Blair
,
J. Am. Chem. Soc.
92
,
5986
(
1970
).
47.
J. R.
Durig
and
J. W.
Clark
,
J. Chem. Phys.
48
,
3216
(
1967
).
48.
D. K.
Koster
and
F. A.
Miller
,
Spectrochim. Acta A
24
,
1487
(
1968
).
49.
M. J.
Cardillo
and
S. H.
Bauer
,
Inorg. Chem.
8
,
2086
(
1969
).
50.
A.
Oskam
,
R.
Elst
, and
J. C.
Duinker
,
Spectrochim. Acta A
26
,
2021
(
1970
).
51.
E. L.
Wagner
,
Theor. Chim. Acta
23
,
115
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.