The average energy (W) expended per ion pair (ip) in hydrogen and the numbers of molecular singlet (R2) and triplet (R3) excitations per ion pair were calculated for electrons of up to 1500 eV energy and extrapolated to high energy limits. Experimental and theoretical cross sections were used. Calculations were made for a secondary electron energy distribution based on measurements of Opal, Beaty, and Peterson at 500 eV and for the Gryzinski distribution. For each distribution calculations were made for two assumptions concerning dissociative ionization. For the preferred calculation (experiment‐based secondary electron distribution for ordinary ionization and zero kinetic energy for electrons formed in dissociative ionization) the results at high energies are W = 36.8 eV/ip, R2 = 1.06 (includes dissociative excitation), and R3 = 0.359. The experimental value of W is 36.3 eV/ip.

1.
W. M. Jones and D. F. Dever (unpublished).
2.
R. L.
Platzman
,
Int. J. Appl. Radiat. Isot.
10
,
116
(
1961
).
3.
C. E. Klots, in Fundamental Processes in Radiation Chemistry, edited by P. Ausloos (Wiley, New York, 1968), Chap. 1.
4.
L. R.
Peterson
and
A. E. S.
Green
,
J. Phys. B
1
,
1131
(
1968
) (see references cited here and in Ref. 5).
5.
L. R.
Peterson
,
Phys. Rev.
187
,
105
(
1969
).
6.
G. A.
Erskine
,
Proc. R. Soc. Lond. A
224
,
362
(
1954
).
7.
W. F. Miller, A Theoretical Study of Excitation and Ionization by Electrons in Helium and of the Mean Energy per Ion Pair, Ph.D. thesis, Purdue University, Lafayette, IN, 1956.
8.
M.
Gryzinski
,
Phys. Rev.
115
,
308
(
1959
). Equation (23) was used as the differential cross section for the energy lost by the primary electron. In the first part of Eq. (27), which was used for normalization, the term‐(U/E2)2 should be multiplied by (1−E1/3E2) (Gryzinski’s notation).
9.
M.
Gryzinski
,
Phys. Rev.
138
,
A305
(
1965
);
M.
Gryzinski
,
Phys. Rev.
138
,
A322
(
1965
);
M.
Gryzinski
,
Phys. Rev.
138
,
A328
(
1965
).
10.
C. B.
Opal
,
W. K.
Peterson
, and
E. C.
Beaty
,
J. Chem. Phys.
55
,
4100
(
1971
).
11.
C. B. Opal, E. C. Beaty and W. K. Peterson, Joint Institute for Laboratory Astrophysics Report No. 108, Boulder, CO, 1971.
12.
D.
Rapp
and
P.
Englander‐Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
13.
L. J.
Kieffer
and
G. H.
Dunn
,
Rev. Mod. Phys.
38
,
1
(
1966
).
14.
J. T.
Tate
and
P. T.
Smith
,
Phys. Rev.
39
,
270
(
1932
).
15.
D.
Rapp
,
P.
Englander‐Golden
, and
D. D.
Briglia
,
J. Chem. Phys.
42
,
4081
(
1965
). The values used were actually taken from Fig. 26 of Kieffer and Dunn (Ref. 13).
16.
J. D. Craggs and H. S. W. Massey, in Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1959), Vol. 36, pp. 314–415; see especially pp. 363–365.
17.
G. H.
Dunn
and
L. J.
Kieffer
,
Phys. Rev.
132
,
2109
(
1963
).
18.
L. J.
Kieffer
and
G. H.
Dunn
,
Phys. Rev.
158
,
61
(
1967
).
19.
R. J.
Van Brunt
and
L. J.
Kieffer
,
Phys. Rev. A
2
,
1293
(
1970
).
20.
U.
Fano
,
Annu. Rev. Nucl. Sci.
13
,
1
(
1963
). Points on the high energy straight line part of the relativistic Fano plot (his Fig. 7) from 1 to 20 keV were converted to points on a plot of σT vs logT, where they also give a straight line. The slope of this line was taken to be the slope at 1000 eV mentioned in the text.
21.
B. L.
Schram
,
F. J.
de Heer
,
M. J.
Van der Wiel
, and
J.
Kistemaker
,
Physica (Utr.)
31
,
94
(
1965
). The data of these authors from 0.6 to 20 keV on a plot of σT vs logT give a straight line above 1 keV which is parallel to but displaced from the straight line of Ref. 20.
22.
S. P.
Khare
,
Phys. Rev.
149
,
33
(
1966
);
S. P.
Khare
,
Phys. Rev.
152
,
74
(
1966
).
23.
J.
Geiger
and
H.
Schmoranzer
,
J. Mol. Spectrosc.
32
,
39
(
1969
).
24.
G. M.
Prok
,
C. F.
Monnin
, and
H. J.
Hettel
,
J. Quant. Spectrosc. Radiat. Transfer
9
,
361
(
1969
).
25.
G. M. Prok, C. F. Monnin, and H. J. Hettel, NASA Tech. Note NASA TN D‐4004 (1967).
26.
R.
Roscoe
,
Philos. Mag.
31
,
349
(
1941
).
The E state is now known to mix with the F state, of considerably larger internuclear separation, to give a double minimum E, F state, whose properties have been accurately determined theoretically by
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
50
,
3228
(
1969
).
The magnitude of the cross section for the parity‐forbidden X→E or E, F transition might seem surprising. This behavior has been confirmed by the calculations of
L.
Ford
and
J. C.
Browne
,
J. Chem. Phys.
55
,
1053
(
1971
), who found that the cross section for E, F excitation by even 34 keV electrons is of the same order of magnitude as, although smaller than, the cross sections for the allowed B and C state excitations.
27.
D. A.
Vroom
and
F. J.
de Heer
,
J. Chem. Phys.
50
,
580
(
1969
).
28.
M. J.
Mumma
and
E. C.
Zipf
,
J. Chem. Phys.
55
,
1661
(
1971
).
29.
G. H.
Dunn
,
R.
Geballe
, and
D.
Pretzer
,
Phys. Rev.
128
,
2200
(
1962
).
30.
D. M.
Cox
and
S. J.
Smith
,
Phys. Rev. A
5
,
2428
(
1972
).
31.
S. J. B.
Corrigan
,
J. Chem. Phys.
43
,
4381
(
1965
).
32.
S. P.
Khare
,
Phys. Rev.
157
,
107
(
1967
).
33.
D. C.
Cartwright
and
A.
Kuppermann
,
Phys. Rev.
163
,
86
(
1967
).
34.
R. P.
Freis
and
J. R.
Hiskes
,
Phys. Rev. A
2
,
573
(
1970
).
35.
G. J.
Schulz
,
Phys. Rev. A
135
,
988
(
1964
).
36.
L.
Fox
and
E. T.
Goodwin
,
Philos. Trans. R. Soc. Lond.
245
,
501
(
1953
).
37.
A.
Dalgarno
and
G. W.
Griffing
,
Proc. R. Soc. Lond. A
248
,
415
(
1958
).
38.
J.
Booz
and
H. G.
Ebert
,
Biophysik
2
,
226
(
1965
).
39.
W. P.
Jesse
and
J.
Sadauskis
,
Phys. Rev.
97
,
1668
(
1955
).
40.
B. L.
Schram
,
F. J.
de Heer
,
M. J.
van der Wiel
, and
J.
Kistemaker
,
Physica (Utr.)
31
,
94
(
1965
).
41.
B. L.
Schram
,
H. F.
Moustafa
,
J.
Schutten
, and
F. J.
de Heer
,
Physica (Utr.)
32
,
734
(
1966
).
42.
W. T.
Miles
,
R.
Thompson
, and
A. E. S.
Green
,
J. Appl. Phys.
43
,
678
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.