A Fourier representation method is presented for calculating the electrostatic energies of classical charge arrays with periodicity in one dimension. Extension of the method to quantum‐mechanical systems is then discussed. The classical presentation illustrates mathematical features which must be understood to avoid apparent divergences in the quantum‐mechanical formulation.

1.
J. M.
Andre
,
J.
Delhalle
,
J. G.
Friapat
, and
G.
Leroy
,
Intern. J. Quantum Chem.
5
,
67
(
1971
).
2.
F. E.
Harris
and
H. J.
Monkhorst
,
Phys. Rev. B
2
,
4400
(
1970
).
3.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965) 4th ed., Formulas 1.443(3) and 1.445(2).
4.
P. P.
Ewald
,
Ann. Physik
64
,
253
(
1921
);
H. M.
Evjen
,
Phys. Rev.
39
,
675
(
1932
);
E. F.
Bertaut
,
J. Phys. Radium
13
,
499
(
1952
).
5.
F. E.
Harris
and
H. J.
Monkhorst
,
Phys. Rev. Letters
23
,
1026
(
1969
).
6.
See, for example,
R. A.
Bonham
,
J. L.
Peacher
, and
H. L.
Cox
,
J. Chem. Phys.
40
,
3083
(
1964
);
M.
Geller
,
J. Chem. Phys.
36
,
2424
(
1962
);
F. E.
Harris
and
H. H.
Michels
,
Advan. Chem. Phys.
13
,
205
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.