Proton spin relaxation and molecular motion in liquid thiophene are studied in the temperature range 300–550°K by measuring spin—lattice relaxation time, T1, and the coefficient of self‐diffusion, D, using spin—echo technique. The value of T1 varies from 24.0 sec at 300°K to 72.0 sec at 550°K with a maximum of 94.0 sec at 490°K. The value of D varies from 2.4× 10−5cm2/sec at 300°K to 38.0× 10−5cm2/sec at 550°K. These results have been analyzed in terms of three relaxation mechanisms: inter and intramolecular dipolar interactions and spin—rotation interactions. The analysis shows that (i) the rotational diffusion constant perpendicular to the plane of the molecule varies from 0.21× 1011sec−1 at 300°K to 3.5× 1011sec−1 at 550°K and obeys an Arrhenius equation up to 500°K with an activation energy 3.2 kcal/mole, (ii) the value of the angular velocity correlation time varies from 1.4× 10−14sec at 300°K to 10.8× 10−14sec at 550°K. An estimate of the spin—rotation interaction constant gives 13TrC≲ 1.0 kHz. The reorientational motion is found to be diffusional up to about 480°K.

1.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev.
73
,
679
(
1948
).
2.
H. G.
Hertz
,
Progr. Magnetic Resonance Spectry.
3
,
158
(
1967
).
3.
J. S. Waugh, Molecular Relaxation Processes (The Chemical Society, London, 1966;
Academic, New York, 1966), p. 113;
J. G. Powles, ibid. p. 127.
4.
A. Abragam, Principles of Nuclear Magnetism (Oxford U.P., London, 1961), Chap. 8.
5.
R.
Kubo
,
J. Phys. Soc. Japan
12
,
570
(
1957
);
R.
Kubo
,
Rept. Progr. Phys.
29
,
255
(
1966
).
6.
H. C.
Torrey
,
Phys. Rev.
92
,
962
(
1953
).
7.
W. T.
Huntress
,Jr.
,
J. Chem. Phys.
48
,
3524
(
1968
);
W. T.
Huntress
, Jr.
,
Advan. Magnetic Resonance
4
,
1
(
1970
).
8.
R. J.
Blume
,
Rev. Sci. Instr.
32
,
554
(
1961
).
9.
W. G. Proctor (private communication). We are grateful to Dr. W. G. Proctor for sendng us circuits of the rf gate and receiver used by him.
10.
H. S.
Gutowsky
,
L. H.
Meyer
, and
R. E.
McClure
,
Rev. Sci. Instr.
24
,
644
(
1953
).
11.
Anup Kitchlew and B. D. Nageswara Rao, Technical Report No. 1/70, Department of Physics, Indian Institute of Technology, Kanpur (U.P.) India, 1970.
12.
D. C.
Douglass
and
D. W.
McCall
,
J. Phys. Chem.
62
,
1102
(
1958
).
13.
J. G.
Powles
and
R.
Figgins
,
Mol. Phys.
10
,
155
(
1965
).
14.
W. B.
Moniz
,
W. A.
Steele
and
J. A.
Dixon
,
J. Chem. Phys.
38
,
2418
(
1963
).
15.
B.
Bak
,
D.
Christensen
,
J.
Rastrup‐Andersen
, and
E.
Tannenbaum
,
J. Chem. Phys.
25
,
892
(
1956
).
16.
A. A.
Brooks
,
J. D.
Cutnell
,
E. O.
Stejskal
, and
V. W.
Weiss
,
J. Chem. Phys.
49
,
1571
(
1968
).
17.
See
P. S.
Hubbard
,
Phys. Rev.
109
,
1153
(
1958
);
P. S.
Hubbard
,
111
,
1746
(
1958
); ,
Phys. Rev.
This calculation was based on isotropic rotational diffusion. In a recent calculation
P. S.
Hubbard
,
J. Chem. Phys.
51
,
1647
(
1969
), in which anisotropic effects are included it was shown that the cross‐correlations might lead to nonexponential1 decays. From the experimental observation it appears that such effects are not significant for the present problem.
18.
D. K.
Green
and
J. G.
Powles
,
Proc. Phys. Soc.
85
,
87
(
1965
).
19.
J. F.
Harmon
and
B. H.
Muller
,
Phys. Rev.
182
,
400
(
1969
).
20.
P. S.
Hubbard
,
Phys. Rev.
131
,
275
(
1963
).
21.
International Critical Tables (McGraw‐Hill, New York, 1926).
22.
G. B.
Benedek
and
E. M.
Purcell
,
J. Chem. Phys.
22
,
2003
(
1954
).
23.
Anup Kitchlew and B. D. Nageswara Rao Mol. Phys. (to be published).
24.
This approximation implies that molecular collisions affect the reorientation about the three axes with equal efficiency. From the relation between τJ and the rotational friction coefficient ξi[(τJ)i = Iii] which, in turn, is related to the angular derivatives of the intermolecular potential function
it can be seen that this approximation implies that the ensemble average of the second derivatives of the intermolecular potential is assumed to be the same for the three principal orientations.7
[See
W. A.
Steele
,
J. Chem. Phys.
38
,
2404
,
2411
(
1963
)].
25.
N. F.
Ramsey
,
Am. Scientists
49
,
509
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.