A rotational isomeric state model with neighbor interactions is used to calculate mean‐square unperturbed dimensions and dipole moments for vinyl chloride chains CH3–(CHClCH2–)xH having degrees of polymerization x ranging from 1 to 150 and stereochemical structures ranging from perfect syndiotacticity to perfect isotacticity. Conformational energies used in the calculation were those which had been established in an analysis based on the stereochemical equilibration of 2,4‐dichloro‐n‐pentane by Flory and Williams. The calculations indicate that the dimensions of poly(vinyl chloride) chains of large x should decrease significantly with increasing isotacticity; this dependence of chain dimensions on stereochemical structure is the opposite of that calculated for vinyl chains having alkyl side groups, such as polypropylene. The dipole moments of poly(vinyl chloride) chains are also predicted to decrease with increasing isotacticity and both the dimensions and dipole moments are expected to decrease with increasing temperature, the largest dependence occurring in the case of perfectly syndiotactic chains. The marked differences in configurational characteristics of poly(vinyl chloride) and polypropylene chains are primarily due to the significant difference in size between Cl atoms and CH3 groups; the electrostatic interactions present in poly(vinyl chloride) chains are of relatively minor importance. The predicted results for large x are in good agreement with published experimental results on poly(vinyl chloride).

1.
P. J.
Flory
,
J. E.
Mark
, and
A.
Abe
,
J. Am. Chem. Soc.
88
,
639
(
1966
).
2.
A.
Abe
,
Polymer J.
1
,
232
(
1970
).
3.
Y.
Fujiwara
and
P. J.
Flory
,
Macromolecules
3
,
280
(
1970
).
4.
K.
Nagai
,
J. Chem. Phys.
47
,
2052
(
1967
).
5.
P. J.
Flory
,
R. L.
Jernigan
, and
A. E.
Tonelli
,
J. Chem. Phys.
48
,
3822
(
1968
).
6.
Y.
Abe
,
A. E.
Tonelli
, and
P. J.
Flory
,
Macromolecules
3
,
294
(
1970
).
7.
A.
Abe
,
J. Am. Chem. Soc.
90
,
2205
(
1968
).
8.
A.
Abe
,
J. Am. Chem. Soc.
92
,
1136
(
1970
).
9.
Y.
Fujiwara
and
P. J.
Flory
,
Macromolecules
3
,
288
(
1970
).
10.
A. E.
Tonelli
,
Y.
Abe
, and
P. J.
Flory
,
Macromolecules
3
,
303
(
1970
).
11.
P. J.
Flory
and
J. D.
Baldeschwieler
,
J. Am. Chem. Soc.
88
,
2873
(
1966
).
12.
P. J.
Flory
and
Y.
Fujiwara
,
Macromolecules
2
,
315
,
327
(
1969
).
13.
Y.
Fujiwara
and
P. J.
Flory
,
Macromolecules
3
,
43
(
1970
).
14.
Y.
Abe
and
P. J.
Flory
,
J. Chem. Phys.
52
,
2814
(
1970
).
15.
A. D.
Williams
,
J. I.
Brauman
,
N. J.
Nelson
, and
P. J.
Flory
,
J. Am. Chem. Soc.
89
,
4807
(
1967
).
16.
A. D.
Williams
and
P. J.
Flory
,
J. Am. Chem. Soc.
91
,
3111
(
1969
).
17.
P. J.
Flory
and
A. D.
Williams
,
J. Am. Chem. Soc.
91
,
3118
(
1969
).
18.
P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).
19.
J.
Marchal
and
H.
Benoit
,
J. Chim. Phys.
52
,
818
(
1955
);
J.
Marchal
and
H.
Benoit
,
J. Polymer Sci.
23
,
223
(
1957
).
20.
W. H.
Stockmayer
,
Pure Appl. Chem.
15
,
539
(
1967
).
21.
K.
Nagai
and
T.
Ishikawa
,
Polymer J.
2
,
321
(
1971
).
22.
H. J. M.
Bowen
(Ed.),
Chem. Soc. (London), Spec. Publ.
11
(
1958
);
L. E.
Sutton
(Ed. ),
Chem. Soc. (London), Spec. Publ.
18
(
1965
).
23.
A. L. McClellan, Tables of Experimental Dipole Moments (W. H. Freeman, San Francisco, Calif., 1963).
24.
IBM subroutine RANDU (SSP/360, version 2).
25.
S.
Satoh
,
J. Polymer Sci. Pt. A
,
2
,
5221
(
1964
).
26.
W. C.
Tincher
,
Makromol. Chem.
85
,
20
(
1965
).
27.
J.
Bargon
,
K. H.
Hellwege
, and
U.
Johnson
,
Makromol. Chem.
95
,
187
(
1966
).
28.
S.
Enemoto
,
M.
Asahina
, and
S.
Satoh
,
J. Polymer Sci. Pt. A1
4
,
1373
(
1966
).
29.
A.
Nakajima
,
F.
Hamada
, and
S.
Hayashi
,
Makromol. Chem.
95
,
40
(
1966
).
30.
F. A.
Bovey
,
F. P.
Hood
,
E. W.
Anderson
, and
R. L.
Kornegay
,
J. Phys. Chem.
71
,
312
(
1967
).
31.
L.
Cavalli
,
G. C.
Borsini
,
G.
Carraro
, and
G.
Confalonieri
,
J. Polymer Sci. Pt. A1
8
,
801
(
1970
).
32.
F.
Heatley
and
F. A.
Bovey
,
Macromolecules
2
,
241
(
1969
).
33.
P. J.
Flory
,
V.
Crescenzi
, and
J. E.
Mark
,
J. Am. Chem. Soc.
86
,
146
(
1964
).
34.
M.
Sato
,
Y.
Koshiishi
, and
M.
Asahina
,
J. Polymer Sci. Pt. B
1
,
233
(
1963
).
35.
P. J. Flory, Principles of Polymer Chemistry (Cornell U.P., Ithaca, N.Y., 1953).
36.
D.
McIntyre
,
A.
Wims
,
L. C.
Williams
, and
L.
Mandelkern
,
J. Phys. Chem.
66
,
1932
(
1962
).
37.
G. C.
Berry
,
J. Chem. Phys.
46
,
1338
(
1967
).
38.
A.
Nakajima
and
K.
Kato
,
Makromol. Chem.
95
,
52
(
1966
).
39.
H.‐G.
Elias
,
Makromol. Chem.
33
,
140
(
1959
).
40.
H.‐G.
Elias
,
M.
Dobler
, and
H.‐R.
Wyss
,
J. Polymer Sci.
46
,
264
(
1960
).
41.
See the compilation of such results by M. Kurata, M. Iwama, and K. Kamada, in Polymer Handbook, edited by J. Brandup and E. H. Immergut (Interscience, New York, 1966).
42.
A.
Nakazawa
,
T.
Matsuo
, and
H.
Inagaki
,
Bull. Inst. Chem. Res. Kyoto Univ.
44
,
354
(
1966
).
43.
M.
Kolínský
,
M.
Ryska
,
M.
Bohdanecký
,
P.
Kratochvíl
,
K.
Šole
, and
D.
Lím
,
J. Polymer Sci. Pt. C
16
,
485
(
1967
).
44.
M.
Bohdanecký
,
V.
Petrus
, and
P.
Kratochvíl
,
Collection Czech. Chem. Commun.
34
,
1168
(
1968
).
45.
L. A. Utracki, Macromolecular Preprints, XXIII International Congress of Pure and Applied Chemistry, 1037, 1971.
46.
See, for example,
M.
Kurata
and
W. H.
Stockmayer
,
Fortschr. Hochpolymer Forsch.
3
,
196
(
1963
).
47.
P. J.
Flory
,
Makromol. Chem.
98
,
128
(
1966
).
48.
Y.
Imamura
,
J. Chem. Soc. Japan
76
,
217
(
1955
).
49.
R. J. W. Le F̀vre and K. M. S. Sundaram, J. Chem. Soc. 1962, 1494.
50.
A.
Kotera
,
M.
Shima
,
N.
Fujisaki
, and
T.
Kobayashi
,
Bull. Chem. Soc. Japan
35
,
1117
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.