The dielectric permittivity and the dielectric loss factor of 5‐methyl‐3, 4‐methyl‐3 and 3‐methyl‐3‐heptanol, n‐ and iso‐butanol, 1,2‐propanediol, dimethyl and diethyl phthallate, and 3‐methylpentane have been measured from 50 to 105 Hz and from −196 to about 20°C above their respective glass transition temperatures. The glass transition temperature Tg of these substances, several more isomeric octanols, and 1‐phenyl‐1‐propanol have been measured by differential thermal analysis. All substances except for 3‐methylpentane and iso‐butanol show either a well‐defined secondary relaxation peak in tanδ, or a clear indication of the presence of a secondary relaxation below their Tg's. Arrhenius plots for the α‐relaxation process of the isomeric octanols are linear with an activation energy of 16–18 kcal/mole, while for other substances they are nonlinear with the activation energy changing from 30 to 70 kcal/mole. The Arrhenius plots for the secondary relaxations are linear and have an activation energy of 4–8 kcal/mole. It is pointed out that the presence of a spectrum of relaxation times in liquids near Tg is not necessarily concomitant with non‐Arrhenius behavior. It is concluded that the presence of secondary relaxations should be considered as a characteristic property of the liquid in or near the glassy state, and do not require specific intramolecular mechanisms for their existance.

1.
G. P.
Johari
and
M.
Goldstein
,
J. Phys. Chem.
74
,
2034
(
1970
).
2.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
3.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
,
J. Am. Chem. Soc.
77
,
3701
(
1955
).
4.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
5.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
6.
G. P. Johari and C. P. Smyth, “Dielectric Relaxation of Rigid Molecules in Supercooled Decalin,” J. Chem. Phys. (to be published).
7.
S. S.
Chang
,
J. A.
Horman
, and
A. B.
Bestul
,
J. Res. Natl. Bur. Std. (U.S.)
A71
,
293
(
1967
).
8.
W.
Dannhauser
,
J. Chem. Phys.
48
,
1911
,
1918
(
1968
).
9.
G. P.
Johari
and
W.
Dannhauser
,
J. Chem. Phys.
50
,
1862
(
1969
).
10.
W.
Dannhuser
and
A. F.
Flueckinger
,
Phys. Chem. Liquid
2
,
37
(
1970
).
11.
G. P.
Johari
and
W.
Dannhauser
,
J. Chem. Phys.
72
,
3273
(
1968
).
12.
W.
Dannhauser
and
R. H.
Cole
,
J. Chem. Phys.
23
,
1762
(
1955
).
13.
K. H. Illers, in Physics of non‐Crystalline Solids, edited by J. A. Prins (North‐Holland, Amsterdam, 1965), p. 321.
14.
D. W.
Davidson
and
R. H.
Cole
,
J. Chem. Phys.
19
,
1484
(
1951
).
15.
N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967).
16.
I. L. Hopkins and C. R. Kurkjian, in Physical Accoustics, edited by W. P. Mason (Academic, New York, 1965), Vol. II, Pt. B, p. 91.
17.
P. Bordewijk, thesis, University of Leiden, 1968.
18.
T. A.
Litovitz
and
G. E.
McDuffie
,Jr.
,
J. Chem. Phys.
37
,
1699
(
1962
),
T. A.
Litovitz
and
G. E.
McDuffie
, Jr.
,
39
,
729
(
1963
).,
J. Chem. Phys.
19.
T. A. Litovitz, in Non‐Crystalline Solids, edited by V. D. Frechette (Wiley, New York, 1960), p. 252.
20.
J. E.
Anderson
and
R.
Ullman
,
J. Chem. Phys.
47
,
2178
(
1967
).
21.
G. P.
Johari
and
W.
Dannhauser
,
J. Chem. Phys.
50
,
1862
(
1969
),
“Dielectric Properties of Phenyl Propanols,” Phys. Chem. Liquids (to be published).
This content is only available via PDF.
You do not currently have access to this content.