A sample of water, consisting of 216 rigid molecules at mass density 1 gm/cm3, has been simulated by computer using the molecular dynamics technique. The system evolves in time by the laws of classical dynamics, subject to an effective pair potential that incorporates the principal structural effects of many‐body interactions in real water. Both static structural properties and the kinetic behavior have been examined in considerable detail for a dynamics ``run'' at nominal temperature 34.3°C. In those few cases where direct comparisons with experiment can be made, agreement is moderately good; a simple energy rescaling of the potential (using the factor 1.06) however improves the closeness of agreement considerably. A sequence of stereoscopic pictures of the system's intermediate configurations reinforces conclusions inferred from the various ``run'' averages: (a) The liquid structure consists of a highly strained random hydrogen‐bond network which bears little structural resemblance to known aqueous crystals; (b) the diffusion process proceeds continuously by cooperative interaction of neighbors, rather than through a sequence of discrete hops between positions of temporary residence. A preliminary assessment of temperature variations confirms the ability of this dynamical model to represent liquid water realistically.

1.
A good review of the current situation is provided by D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford U.P., New York, 1969).
2.
K.
Morokuma
and
L.
Pederson
,
J. Chem. Phys.
48
,
3275
(
1968
).
3.
P. A.
Kollman
and
L. C.
Allen
,
J. Chem. Phys.
51
,
3286
(
1969
).
4.
K.
Morokuma
and
J. R.
Winick
,
J. Chem. Phys.
52
,
1301
(
1970
).
5.
G. H. F.
Diercksen
,
Chem. Phys. Letters
4
,
373
(
1969
).
6.
J.
Del Bene
and
J. A.
Pople
,
Chem. Phys. Letters
4
,
426
(
1969
).
7.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
,
Chem. Phys. Letters
4
,
527
(
1970
).
8.
J.
Del Bene
and
J. A.
Pople
,
J. Chem. Phys.
52
,
4858
(
1970
).
9.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
,
J. Chem. Phys.
53
,
4544
(
1970
).
10.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
11.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
33
,
1439
(
1960
).
12.
S. W.
Peterson
and
H. A.
Levy
,
Acta Cryst.
10
,
70
(
1957
).
13.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
14.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
(
1935
).
15.
If interaction of the molecules with a container wall had to be explicitly considered, we would include single‐molecule terms V(1)(xi) in this development. These extra potentials are unnecessary in the present context, however.
16.
F. H.
Stillinger
,
J. Phys. Chem.
74
,
3677
(
1970
).
17.
A. Ben‐Naim and F. H. Stillinger, “Aspects of the Statistical‐Mechanical Theory of Water,” in Structure and Transport Processes in Water and Aqueous Solutions, edited by R. A. Horne (Wiley‐Interscience, New York, to be published).
18.
J.
Corner
,
Trans. Faraday Soc.
44
,
914
(
1948
).
19.
The nuclear positions specified here do not conform exactly to the stable geometry of isolated water molecules. In particular, our O‐H bonds are slightly too long (1 Å vs 0.957 Å measured length), and the bond angle somewhat too large (109° 28′ for the perfect tetrahedron vs 104° 31′ measured). However, there is experimental evidence that water molecule interactions in condensed phases may increase the average bond length (Peterson and Levy, Ref. 12) and theoretical evidence that they increase the average bond angle (Hankins, Moskowitz, and Stillinger, Ref. 9).
20.
H. Goldstein, Classical Mechanics (Addison‐Wesley, Cambridge, Mass., 1953), p. 158.
21.
Reference 20, p. 134.
22.
A.
Rahman
,
Phys. Rev.
136
,
A405
(
1964
).
23.
It would be possible to restore energy conservation by forcing the cutoff to arise from a rapid decline in S(rij) from 1 to 0 when rij was close to 3.25σ. But this would entail unphysically large forces and torques at that large separation, which we consider to be undesirable.
24.
Some additional test runs were performed at the Bell Telephone Laboratories, Murray Hill, N.J., using a GE 635 computer.
25.
F. H.
Stillinger
and
A.
Ben‐Naim
,
J. Phys. Chem.
73
,
900
(
1969
).
26.
H. S.
Frank
and
W. Y.
Wen
,
Discussions Faraday Soc.
24
,
133
(
1957
).
27.
G.
Némethy
and
H. A.
Scheraga
,
J. Chem. Phys.
36
,
3382
(
1962
).
28.
A. H.
Narten
and
H. A.
Levy
,
Science
165
,
447
(
1969
).
29.
A. H. Narten, ONRL Report No. ONRL‐4578, July 1970. We are indebted to Dr. Narten for providing us with the atomic scattering factors used in the x‐ray data treatment, whose original sources are identified in Ref. 29 of his report.
30.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
31.
The full pair correlation function g(2)(x1,x2) is normalized so as to approach (8π2)−1 at large separation r12. In Eqs. (4.15) and (4.16), ρ = ρ0 is the molecular number density.
32.
C. A.
Coulson
and
D.
Eisenberg
,
Proc. Roy. Soc. (London)
A291
,
444
(
1966
).
33.
L. Onsager and M. Dupuis, in Electrolytes, edited by B. Pesce (Pergamon, New York, 1962), p. 27.
34.
F. E.
Harris
,
E. W.
Haycock
, and
B. J.
Alder
,
J. Chem. Phys.
21
,
1943
(
1953
);
see also
F. E.
Harris
and
B. J.
Alder
,
J. Chem. Phys.
21
,
1031
(
1953
).,
J. Chem. Phys.
35.
The members of the pair could simultaneously act either as proton donors to the third or as proton acceptors from the third.
36.
Realist Stereo Viewer, Realist, Inc., Menomonee, Wis.
37.
J. D.
Worley
and
I. M.
Klotz
,
J. Chem. Phys.
45
,
2868
(
1966
).
38.
G. E.
Walrafen
,
J. Chem. Phys.
48
,
244
(
1968
).
39.
G. E. Walrafen, in Hydrogen‐Bonded Solvent Systems, edited by A. K. Covington and P. Jones (Taylor and Francis, London, 1968), pp. 9–29.
40.
L. Pauling, The Nature of the Chemical Bond (Cornell U.P., Ithaca, N.Y., 1960), 3rd ed., p. 473.
41.
M. D.
Danford
and
H. A.
Levy
,
J. Am. Chem. Soc.
84
,
3965
(
1962
).
42.
O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, New York, 1965).
43.
These convex cages are illustrated by the clathrates in idealized form. Only by rotating its hydrogen bonds into eclipsed configurations can a cavity of sufficient size be built to accommodate the solute molecules.
44.
Reference 1, p. 89.
45.
R.
Hausser
,
G.
Maier
, and
F.
Noack
,
Z. Naturforsch.
21a
,
1410
(
1966
).
46.
J. S.
Murday
and
R. M.
Cotts
,
J. Chem. Phys.
53
,
4724
(
1970
).
47.
The numerical calculation assumed that the autocorrelation function vanished beyond the “cutoff.”
48.
J. G.
Powles
,
J. Chem. Phys.
21
,
633
(
1953
).
49.
T.‐W.
Nee
and
R. W.
Zwanzig
,
J. Chem. Phys.
52
,
6353
(
1970
).
50.
Reference 1, p. 207.
51.
S. G.
Brush
,
Rev. Mod. Phys.
33
,
79
(
1961
).
52.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev.
73
,
679
(
1948
).
53.
K.
Krynicki
,
Physica
32
,
167
(
1966
).
54.
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
9
,
341
(
1941
).
55.
E. H.
Grant
,
T. J.
Buchanan
, and
H. F.
Cook
,
J. Chem. Phys.
26
,
156
(
1957
).
56.
L.
Van Hove
,
Phys. Rev.
95
,
249
(
1954
).
57.
These Gaussian approximations are reviewed by A. Sjölander, in Thermal Neutron Scattering, edited by P. Egelstaff (Academic, New York, 1965), Chap. 7.
58.
It is however always Gaussian in both the short and long time limits.
59.
B. N.
Brockhouse
,
Phys. Rev. Letters
2
,
287
(
1959
).
60.
D. J.
Hughes
,
H.
Palevsky
,
W.
Kley
, and
E.
Tunkelo
,
Phys. Rev.
119
,
872
(
1960
).
61.
K. S.
Singwi
and
A.
Sjölander
,
Phys. Rev.
119
,
863
(
1960
).
62.
C. T.
Chudley
and
R. J.
Elliott
,
Proc. Phys. Soc. (London)
77
,
353
(
1961
).
63.
M.
Sakamoto
,
B. N.
Brockhouse
,
R. G.
Johnson
, and
N. K.
Pope
,
J. Phys. Soc. Japan Suppl. B
17
,
370
(
1962
).
64.
Reference 1, p. 221.
65.
We are indebted to Dr. K. Gillen and Dr. D. C. Douglass for providing this value prior to publication.
66.
W.
Kauzmann
,
Advan. Protein Chem.
14
,
1
(
1959
).
67.
G.
Némethy
,
Angew. Chem.
6
,
195
(
1967
).
68.
J. A.
Barker
and
R. O.
Watts
,
Chem. Phys. Letters
3
,
144
(
1969
).
69.
J. S.
Rowlinson
,
Trans. Faraday Soc.
47
,
120
(
1951
).
70.
C. W. Gear, ANL Report No. ANL‐7126, 1966.
71.
F. E. Harris and B. J. Alder, Ref. 34.
72.
Reference 30, Eq. (12).
This content is only available via PDF.
You do not currently have access to this content.