The coupled currents approach of Fromhold and Cook as applied to the formation of very thin oxide films on metals is modified to allow for the reflection of electrons which have tunneled to the gas–oxide interface. Reaction of the tunneling electrons with adsorbed oxygen atoms (present at low concentration) rather than with adsorbed oxygen molecules is suggested as a possible, although not exclusive, physical basis for the low capture probability. This modification leads to the hypothesis that neither a virtual electronic or ionic equilibrium may prevail across the oxide during low‐temperature oxidation studies. Experimental measurements of the change in the contact potential difference between a (100) Cu single crystal and a high purity Au polycrystal during exposure to oxygen are compared with the predicted electric potential difference cross the oxide; the agreement between theory and experiment is good. A similar comparison between Rhodin's thickness measurements and predictions of the above model for the oxidation of (100) Cu shows poor quantitative agreement.

1.
N. F.
Mott
,
Trans. Faraday Soc.
35
,
1175
(
1939
);
N. F.
Mott
,
36
,
472
(
1940
); ,
Trans. Faraday Soc.
N. F.
Mott
,
43
,
429
(
1947
).,
Trans. Faraday Soc.
2.
N.
Cabrera
,
Phil. Mag.
40
,
175
(
1949
).
3.
T. B.
Grimley
and
B. M. W.
Trapnell
,
Proc. Roy. Soc. (London)
A234
,
405
(
1956
).
4.
T. B.
Grimley
,
Discussions Faraday Soc.
28
,
223
(
1959
).
5.
N.
Cabrera
and
N. F.
Mott
,
Rept. Progr. Phys.
12
,
163
(
1949
).
6.
K.
Hauffe
and
B.
Ilschner
,
Z. Electrochem.
58
,
382
(
1954
).
7.
A. T.
Fromhold
, Jr.
and
E. L.
Cook
,
Phys. Rev. Letters
17
,
1212
(
1966
).
8.
A. T.
Fromhold
,Jr.
and
E. L.
Cook
,
Phys. Rev.
158
,
600
(
1967
);
A. T.
Fromhold
, Jr.
and
E. L.
Cook
,
163
,
650
(
1967
).,
Phys. Rev.
9.
J. E.
Boggio
and
R. C.
Plumb
,
J. Chem. Phys.
44
,
1081
(
1966
).
10.
C. T.
Kirk
and
E. E.
Huber
, Jr.
,
Surface Sci.
9
,
217
(
1968
).
11.
J. E.
Boggio
,
Surface Sci.
14
,
1
(
1969
).
12.
N.
Cabrera
and
J.
Hamon
,
Compt. Rend.
224
,
1713
(
1947
).
13.
T. N.
Rhodin
,
J. Am. Chem. Soc.
72
,
5102
(
1950
);
T. N.
Rhodin
,
73
,
3143
(
1951
).,
J. Am. Chem. Soc.
14.
W.
Scheuble
,
Z. Physik
135
,
125
(
1953
).
15.
D. D.
Eley
and
R. R.
Wilkinson
,
Proc. Roy. Soc. (London)
A254
,
327
(
1960
).
16.
F. P. Mertens, Ph.D. dissertation, Worcester Polytechnic Institute, 1965 (unpublished).
17.
C.
Wagner
,
Z. Physik. Chem.
B21
,
25
(
1933
).
18.
H. B. Gray and G. P. Haight, Jr., Basic Principles of Chemistry (Benjamin, New York, 1967), p. 238.
19.
E. R.
Lippincott
and
J. A.
Creighton
,
J. Chem. Phys.
40
,
1779
(
1964
).
20.
J. H.
Lunsford
and
J. P.
Jayne
,
J. Chem. Phys.
44
,
1487
(
1966
).
R. D.
Iyengar
,
V. V. Scubba
Rao
, and
A. C.
Zettlemoyer
,
Surface Sci.
13
,
251
(
1969
).
21.
D. O. Hayward and B. M. W. Trapnell, Chemisorption (Butterworths, London, 1964), p. 274.
22.
W. E.
Garner
,
F. S.
Stone
, and
P. F.
Tiley
,
Proc. Roy. Soc. (London)
A211
,
472
(
1952
).
23.
J. G.
Simmons
,
J. Appl. Phys.
34
,
2583
(
1963
);
J. G.
Simmons
,
35
,
2472
(
1964
); ,
J. Appl. Phys.
O. L.
Nelson
and
D. E.
Anderson
,
J. Appl. Phys.
37
,
77
(
1966
); ,
J. Appl. Phys.
S. R.
Pollack
and
C. E.
Morris
,
J. Appl. Phys.
35
,
1503
(
1964
).,
J. Appl. Phys.
24.
W. A.
Zisman
,
Rev. Sci. Instr.
3
,
367
(
1932
).
25.
Kelvin
,
Phil. Mag.
46
,
91
(
1898
).
26.
H. E.
Farnsworth
,
R. E.
Schlier
,
T. H.
George
, and
R. M.
Burger
,
J. Appl. Phys.
29
,
1150
(
1958
).
27.
R. N.
Lee
and
H. E.
Farnsworth
,
Surface Sci.
3
,
461
(
1965
).
28.
W. M. H.
Sachtler
,
G. H. H.
Dorgelo
, and
A. A.
Holscher
,
Surface Sci.
5
,
221
(
1966
).
29.
N.
Thakkar
and
R. C.
Plumb
,
J. Phys. Chem.
69
,
439
(
1965
).
30.
See for example:
P. J.
Estrup
and
J. A.
Anderson
,
J. Chem. Phys.
45
,
2254
(
1966
);
K.
Hayek
,
H. E.
Farnsworth
, and
R. L.
Park
,
Surface Sci.
10
,
429
(
1968
);
C. C.
Chang
and
L. H.
Germer
,
Surface Sci.
8
,
115
(
1967
).,
Surf. Sci.
This content is only available via PDF.
You do not currently have access to this content.