The photolysis of vinyl fluoride at 1470 Å and pressures in the range 1–150 torr, yields in addition to C2H2 and C2HF, 1,1‐C2H2F2. The yield of 1,1‐C2H2F2 with respect to that of C2H2, increases rapidly with decreasing pressure. It is proposed that F atoms are liberated as a result of the decomposition of certain excited C2H3F molecules. The F atoms in turn react with C2H3F to give a chemically activated difluoroethyl radical with a small excess energy with respect to a decomposition which yields almost exclusively 1,1‐C2H2F2. The details of this preliminary proposal are discussed in relation to the measured relative yields of C2H2, C2HF, and 1,1‐C2H2F2.
REFERENCES
1.
2.
3.
J. A.
Kerr
, A. W.
Kirk
, B. V.
O’Grady
, D. C.
Phillips
, and A. F.
Trotman‐Dickenson
, Discussions Faraday Soc.
44
, 263
(1967
).4.
For a summary of the data pertaining to activated ethylenes, see, (a)
R. F.
Hampson
,Jr. and J. R.
McNesby
, J. Chem. Phys.
43
, 3592
(1965
);(b)
A. W.
Kirk
and E.
Tschuikow‐Roux
, J. Chem. Phys.
51
, 2247
(1969
)., J. Chem. Phys.
5.
J. C.
Hassler
and D. W.
Setser
, J. Chem. Phys.
45
, 3237
, 3246
(1966
);J. C.
Hassler
, D. W.
Setser
, and R. L.
Johnson
, J. Chem. Phys.
45
, 3231
(1966
); , J. Chem. Phys.
6.
M. J.
Perona
, J. T.
Bryant
, and G. O.
Pritchard
, J. Am. Chem. Soc.
90
, 4782
(1968
).7.
Y.‐N.
Tang
and F. S.
Rowland
, J. Am. Chem. Soc.
90
, 570
, 574
(1968
).8.
A. W. Kirk, A. F. Trotman‐Dickenson, and B. L. Trus, J. Chem. Soc. A1968, 3058.
9.
A. W. Kirk and A. F. Trotman‐Dickenson, (unpublished).
10.
See, for example,
M. P.
Halstead
and C. P.
Quinn
, Trans. Faraday Soc.
64
, 103
(1968
). This work indicates that molecular elimination of hydrogen does not occur to any significant extent in the thermal activation of ethylene.11.
J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, New York, 1966), pp. 126, 295.
12.
13.
14.
15.
16.
A. Cornu and R. Massot, Compilation of Mass Spectral Data (Heyden, London, 1966).
17.
18.
It appears that the position of attack by a fluorine atom on has not been reported in the literature. If, however, the excited radical does indeed exist in the structural form recognizable as a 1, 2‐difluoroethyl radical, then it is implicit that this radical either decomposes in such a way as to yield finally 1, 1‐difluoroethylene only, or in the attempt to form 1, 2‐difluoroethylenes, its rate of H expulsion is not competitive with that of H expulsion from the excited 1, 1‐difluoroethyl radical, and thus the excited 1, 2‐difluoroethyl radical is collisionally deactivated and undergoes addition polymerisation with the major component, vinyl fluoride. However, we believe that in the case of excited radicals of the substituted ethyl type structural isomerism may not be clearly defined.
19.
J. M.
Simmie
, W. J.
Quiring
, and E.
Tschuikow‐Roux
, J. Phys. Chem.
74
, 992
(1970
).20.
A. R.
Trobridge
and K. R.
Jennings
, Trans. Faraday Soc.
61
, 2168
(1965
).21.
22.
23.
(a)
W. D.
Good
, D. R.
Douslin
, D. W.
Scott
, A.
George
, J. L.
Lacina
, J. P.
Dawson
, and G.
Waddington
, J. Phys. Chem.
63
, 1133
(1959
);(b)
J. B.
Flannery
and G. J.
Janz
, J. Am. Chem. Soc.
88
, 5097
(1966
).24.
25.
G. M.
Wieder
and R. A.
Marcus
, J. Chem. Phys.
37
, 1835
(1962
)., J. Chem. Phys.
26.
D. C.
Tardy
and B. S.
Rabinovitch
, Trans. Faraday Soc.
64
, 1844
(1969
).27.
(a)
G. Z.
Whitten
and B. S.
Rabinovitch
, J. Chem. Phys.
38
, 2466
(1963
);(b)
G. Z.
Whitten
and B. S.
Rabinovitch
, 41
, 1883
(1964
)., J. Chem. Phys.
28.
29.
30.
31.
This content is only available via PDF.
© 1970 American Institute of Physics.
1970
American Institute of Physics
You do not currently have access to this content.