A classical calculation of polar gas rotational relaxation times is carried out based on the volume viscosity definition of the relaxation time. The calculation demonstrates that the volume viscosity relaxation time agrees with the relaxation time based on an energy relaxation equation through third order in perturbation. An examination of thermal conductivity data shows that the extraction of rotational collision numbers from such measurements is highly suspect. On the other hand, it might be possible to determine internal diffusion coefficients from thermal conductivity measurements when rotational collision numbers can be obtained from other sources.

1.
F. J.
Zeleznik
,
J. Chem. Phys.
47
,
3410
(
1967
).
2.
R. G. Gordon, W. Klemperer, and J. I. Steinfeld, in Annual Review of Physical Chemistry, edited by H. Eyering (Annual Reviews, Palo Alto, Calif., 1968), p. 215.
3.
S. R. DeGroot and P. Mazur, Non‐Equilibrium Thermodynamics (Interscience, New York, 1962), p. 331.
4.
C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, in Studies in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck (Wiley, New York, 1964), Vol. 2, p. 241.
5.
J. G.
Parker
,
Phys. Fluids
2
,
449
(
1959
).
6.
C.
Nyeland
,
J. Chem. Phys.
46
,
63
(
1967
).
7.
R. G.
Gordon
,
Physica
34
,
398
(
1967
).
8.
L. B. Evans, “Rotational Relaxation in Polar Gases,” Ph.D. Thesis, Oklahoma State University, 1969.
a Note added in proof: There is also an acoustic measurement for NH3 [
D. G.
Jones
,
J. D.
Lambert
,
M. P.
Saksena
, and
J. L.
Stretton
,
Trans. Faraday Soc.
65
,
965
(
1969
)].
9.
E. A.
Mason
and
L.
Monchick
,
J. Chem. Phys.
36
,
1622
(
1962
).
10.
L.
Monchick
,
A. N. G.
Pereira
, and
E. A.
Mason
,
J. Chem. Phys.
42
,
3241
(
1965
).
11.
D. R. Stull, JANAF Thermochemical Tables (Dow Chem. Co., Midland, Mich., 1965), obtainable from Clearing House, U.S., Department of Commerce, Springfield, Va.
12.
B. J. McBride and S. Gordon, NASA Tech. Note D‐4097 (1967).
13.
L.
Monchick
and
E. A.
Mason
,
J. Chem. Phys.
35
,
1676
(
1961
).
14.
E. A. Mason, in Proceedings of the Fourth Symposium on Thermophysical Properties, edited by, J. R. Moszynski (American Society of Mechanical Engineers, New York, 1968), p. 21.
15.
S. I.
Sandler
,
Phys. Fluids
11
,
2459
(
1968
).
16.
R. S. Brokaw, NASA Tech. Memo. TMX‐52478 (1968).
17.
L. M.
Crapo
and
G. W.
Flynn
,
J. Chem. Phys.
43
,
1443
(
1965
).
18.
R. A. Svehla, NASA Tech. Rept. TR R‐132 (1962).
19.
E. U.
Franck
and
F.
Meyer
,
Z. Elektrochem.
63
,
571
(
1959
).
20.
G.
Briegleb
und
W.
Strohmeier
,
Z. Elektrochem.
57
,
668
(
1953
).
21.
R. W.
Long
,
J. H.
Hildebrand
, and
W. E.
Morrell
,
J. Am. Chem. Soc.
65
,
182
(
1943
).
22.
D. F.
Smith
,
J. Chem. Phys.
28
,
1040
(
1958
).
23.
D. K.
Hindermann
and
C. D.
Cornwell
,
J. Chem. Phys.
48
,
2017
(
1968
).
24.
M.
Atoji
and
W. M.
Lipscomb
,
Acta Cryst.
7
,
173
(
1954
).
25.
H. J. M.
Hanley
and
M.
Klein
,
Natl. Bur. Std. (U.S.), Tech. Note
360
(
1967
).
26.
J. H. Milligan, Jr. and P. E. Liley, AIChE‐ASME Heat Transfer Conference and Products Show, Cleveland, Ohio, 1964, Paper 64‐HT‐20.
27.
J.
Kestin
and
J. H.
Whitelaw
,
Trans. ASME, J. Eng. Power
88A
,
82
(
1966
).
28.
C. F.
Bonilla
,
S. J.
Wang
, and
H.
Weiner
,
Trans. ASME
78
,
1285
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.