The polarizability, α = α0 + α1, for the 10‐electron atomic systems Ne, Na+, Mg2+, Al3+, and Si4+ has been calculated by the uncoupled Hartree–Fock method with the perturbation correction of Tuan and co‐workers (PUCHF Method). The correction is rather significant, with the percentage ratio α1 / α% being around 20%. The contributions to α from individual orbitals were also investigated. It is shown that the outermost orbitals and the orbitals along the direction of external electric field give the largest contribution to α: The contribution from the two 2p0 orbitals is around 31.1%–42.2%. The α obtained by the PUCHF method differs from the coupled Hartree–Fock (CHF) method by 3.6% to 4.8% except for the neutral atom Ne which differs by 7.8%. The agreement of α between the PUCHF and CHF methods improves with increase of nuclear charge, as has been observed previously for the dipole and quadrupole polarizabilities of He, Li, and Be isoelectronic sequences by Epstein and Johnson. It is concluded that (1) the PUCHF method offers a simple and tractable way to study the contribution of individual orbitals to physical properties, and (2) for polarizabilities of positive ions the PUCHF method gives results with accuracy comparable to those obtained from the CHF method.

1.
A.
Dalgarno
,
Advan. Phys.
11
,
281
(
1962
).
2.
V.
Fock
,
Z. Physik
61
,
126
(
1930
);
V.
Fock
,
62
,
795
(
1930
); ,
Z. Phys.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
3.
D. F‐t.
Tuan
,
S. T.
Epstein
, and
J. O.
Hirschfelder
,
J. Chem. Phys.
44
,
431
(
1966
).
4.
J. I.
Musher
,
J. Chem. Phys.
46
,
369
(
1966
).
5.
(a)
J.
Goldstone
,
Proc. Roy. Soc. (London)
A239
,
267
(
1957
);
(b)
H. P.
Kelly
,
Phys. Rev.
131
,
684
(
1963
);
H. P.
Kelly
,
136
,
B896
(
1964
); ,
Phys. Rev.
H. P.
Kelly
,
144
,
39
(
1966
); ,
Phys. Rev.
(c)
E. S.
Chang
,
R. T.
Pu
, and
T. P.
Das
,
Phys. Rev.
174
,
1
(
1968
);
(d)
E. S.
Chang
,
R. T.
Pu
, and
T. P.
Das
,
174
,
16
(
1968
).,
Phys. Rev.
6.
(a)
A.
Dalgarno
,
Proc. Roy. Soc. (London)
A251
,
282
(
1959
);
(b)
L. C.
Allen
,
Phys. Rev.
118
,
167
(
1960
);
(c)
A.
Kaneko
,
J. Phys. Soc. Japan
14
,
1600
(
1959
);
(d)
H.
Peng
,
Proc. Roy. Soc. (London)
A178
,
499
(
1941
).
7.
P. W.
Langoff
,
M.
Karplus
, and
R. P.
Hurst
,
J. Chem. Phys.
44
,
505
(
1966
). Comparison of different coupled and uncoupled Hartree‐Fock Methods is given here too.
8.
(a)
M.
Karplus
and
H. J.
Kolker
,
J. Chem. Phys.
38
,
1263
(
1963
);
M.
Karplus
and
H. J.
Kolker
,
39
,
2011
(
1963
); ,
J. Chem. Phys.
(b)
M.
Yoshmine
and
R. P.
Hurst
,
Phys. Rev.
135
,
A612
(
1964
);
(c)
P. W.
Langhoff
and
R. P.
Hurst
,
Phys. Rev.
139
,
A1415
(
1965
).,
Phys. Rev.
9.
(a)
H. D.
Cohen
and
C. C. J.
Roothaan
,
J. Chem. Phys.
43
,
S34
(
1965
);
(b)
D. H.
Cohen
,
J. Chem. Phys.
45
,
10
(
1966
).,
J. Chem. Phys.
10.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
);
A.
Dalgarno
and
H. A. J.
McIntyre
,
Proc. Phys. Soc. (London)
,
85
,
47
(
1965
); and Ref. 7.
11.
(a)
J.
Lahiri
and
A.
Mukherji
,
J. Phys. Soc. Japan
21
,
1178
(
1966
);
J.
Lahiri
and
A.
Mukherji
,
Phys. Rev.
141
,
428
(
1966
);
(b)
J.
Lahiri
and
A.
Mukherji
,
153
,
386
(
1967
); ,
Phys. Rev.
(c)
J.
Lahiri
and
A.
Mukherji
,
155
,
24
(
1967
).,
Phys. Rev.
12.
A. T.
Amos
and
J. I.
Musher
,
Mol. Phys.
13
,
509
(
1967
);
A. T.
Amos
and
H. G. Ff.
Roberts
,
J. Chem. Phys.
50
,
2376
(
1969
);
H. G. Ff.
Roberts
,
Theoret. Chim. Acta.
15
,
63
(
1969
).
13.
W. J.
Deal
and
N. R.
Kestner
,
J. Chem. Phys.
45
,
4014
(
1966
).
14.
S. T.
Epstein
and
R. E.
Johnson
,
J. Chem. Phys.
47
,
2275
(
1967
).
15.
In order to simplify our notations, we use the convention that superscripts on all symbols, except those on λ and μ, indicate the order of perturbation.
16.
J. O.
Hirschfelder
,
W. B.
Brown
, and
S. T.
Epstein
,
Advan. Quantum Chem.
1
,
255
(
1964
).
17.
(a)
A.
Dalgarno
and
A. L.
Stewart
,
Proc. Roy. Soc. (London)
A238
,
269
(
1956
);
A.
Dalgarno
and
A. L.
Stewart
,
A240
,
274
(
1957
); ,
Proc. R. Soc. London, Ser. A
A.
Dalgarno
and
A. L.
Stewart
,
A247
,
245
(
1958
); ,
Proc. R. Soc. London, Ser. A
(b)
D. F.‐t.
Tuan
,
J. Chem. Phys.
46
,
2435
(
1967
).
18.
One can also use (h0−εi0)ui1+(wi−εi1)ui0 = 0, instead of Eq. (11) [
J. I.
Musher
,
Ann. Phys.
32
,
416
(
1965
) and Ref. 7]. Thus the orthogonality condition 〈ui0, uj1〉+〈ui1, uj0〉 = 0 is automatically insured.
19.
L.
Brillouin
,
Actualities Sci. et. Ind. Nos.
71
,
159
(
1933–34
).
20.
E.
Clementi
,
IBM J. Res. Develop.
Suppl.
9
,
2
(
1965
).
21.
L.
Pauling
,
Proc. Roy. Soc. (London)
114
,
181
(
1927
).
22.
B. Edlen in Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1964), Vol. 27, p. 80.
23.
J. E.
Mayer
and
M. G.
Mayer
,
Phys. Rev.
43
,
605
(
1933
).
24.
Landolt‐Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Atome and Ionen (Springer, Berlin, 1950), Vol. 1, Pt. 1.
25.
M.
Born
and
W.
Heisenberg
,
Z. Physik
23
,
407
(
1924
).
26.
Spectral interpretation by K. Bockasten (private communication between Bockasten and Cohen).
27.
K.
Bockasten
,
Arkiv Fysik
10
,
567
(
1956
).
28.
K.
Bockasten
,
Phys. Rev.
102
,
729
(
1956
).
29.
Notice that in their calculation these authors did not calculate terms precisely according to this definition since they did not use the VN potential in the Hartree‐Fock Hamiltonian, but instead used their VN−1 potential because the latter can give more rapid convergence. However, in their numerical results they did take into account the terms corresponding to the correction from VN−1 to VN.
30.
Chang, Pu, and Das [Ref. 5(d)] found that the intershell self‐consistency is large in dipole shielding factor but small in dipole polarizability. This suggests that the PUCHF method should be more important in the study of shielding factors.
31.
J. M.
Schulman
and
J. I.
Musher
,
J. Chem. Phys.
49
,
4845
(
1968
).
32.
D. F‐t. Tuan, Chem. Phys. Letters (to be published).
This content is only available via PDF.
You do not currently have access to this content.