Free vapor‐phase molecules of iodine heptafluoride are pentagonal bipyramids with axial bonds (1.786 ± 0.007 Å esd) shorter than equatorial bonds (1.858 ± 0.004 Å). They are deformed from D5h symmetry on the average by 7.5° ring puckering displacements (e2 symmetry) and 4.5° axial bend displacements (e1 symmetry). The distortion from D5h, interpreted in terms of the points‐on‐a‐sphere variant of the valence‐shell electron‐pair theory, is compatible with an effective force law between electron pairs of Vij ∼ rij−n with n in the broad vicinity of 3.5. Expressing forces harder than simple Coulomb repulsions and much softer than conventional atom–atom nonbonded repulsions, the potential‐energy law is in a range consistent with Gillespie's bond–bond repulsion theory. The simplest interpretation of the diffraction intensities is that the molecules undergo essentially free pseudorotation along a pathway (predominantly e2 displacement coordinates) connecting 10 equivalent C2 structures via Cs intermediates. The observed pseudoradial displacement suggests a value of about 5 cm−1 for the pseudoangular rotation constant h / 8π2cIeff. The appreciable axial bend induced by the ring pucker is correlated in phase with the pucker displacement. This correlation is responsible for introducing a pronounced skewing of the Fax···Feq radial distribution peak (i.e., an “anharmonic shrinkage”) and also presumably imparts significant infrared activity to the e2 modes in overtones and combination bands. Furthermore, the axial bend gives the molecule a dipole moment which may explain recent molecular‐beam experiments by Klemperer et al.

1.
J. G.
Malm
,
H.
Selig
, and
S.
Fried
,
Quart. Rev. (London)
82
,
1510
(
1960
).
2.
Osmium heptafluoride is also known but is stable only at low temperatures.
O.
Glemser
,
H. W.
Roesky
,
K. H.
Hellberg
, and
H. V.
Werther
,
Ber.
99
,
2652
(
1966
).
3.
N. V.
Sidgwick
and
H. M.
Powell
,
Proc. Roy. Soc. (London)
A176
,
153
(
1940
).
4.
R. J.
Gillespie
and
R. S.
Nyholm
,
Quart. Rev. (London)
11
,
339
(
1957
).
5.
R. J.
Gillespie
,
J. Chem. Educ.
40
,
295
(
1963
);
R. J.
Gillespie
,
J. Am. Chem. Soc.
85
,
4672
(
1963
);
R. J.
Gillespie
,
Inorg. Chem.
5
,
1634
(
1966
);
R. J.
Gillespie
,
J. Chem. Educ.
47
,
18
(
1970
).
6.
T. A.
Claxton
and
G. C.
Benson
,
Can. J. Chem.
44
,
157
(
1966
).
7.
H. B.
Thompson
and
L. S.
Bartell
,
Inorg. Chem.
7
,
488
(
1968
).
8.
H. H.
Claassen
,
E. L.
Gasner
, and
H.
Selig
,
J. Chem. Phys.
49
,
1803
(
1968
).
9.
H. B.
Thompson
and
L. S.
Bartell
,
Trans. Am. Cryst. Soc.
2
,
190
(
1966
).
10.
E. J.
Jacob
and
L. S.
Bartell
,
J. Chem. Phys.
53
,
2235
(
1970
).
11.
R. M.
Gavin
,Jr.
and
L. S.
Bartell
,
J. Chem. Phys.
48
,
2460
(
1968
);
L. S.
Bartell
,
R. M.
Gavin
, Jr.
,
H. B.
Thompson
, and
C. L.
Chernick
,
J. Chem. Phys.
43
,
2547
(
1965
).,
J. Chem. Phys.
12.
W. J. Adams, Doctoral dissertation, The University of Michigan, Ann Arbor, Mich., 1969.
13.
For a tabulation of experimental intensity data for IF7, order Document 01098 from National Auxiliary Publication Service of the ASIS—CCM Information Corp., 909 Third Ave., New York, New York 10022, remitting $2.00 for microfiche or $5.00 for photocopies.
14.
L. S.
Bartell
,
L. O.
Brockway
, and
R. H.
Schwendeman
,
J. Chem. Phys.
23
,
1854
(
1955
).
15.
R. A.
Bonham
and
L. S.
Bartell
,
J. Chem. Phys.
31
,
703
(
1959
).
16.
V.
Schomaker
and
R. G.
Glauber
,
Nature
170
,
290
(
1952
);
R. G.
Glauber
and
V.
Schomaker
,
Phys. Rev.
89
,
667
(
1953
);
J. A.
Ibers
and
J. A.
Hoerni
,
Acta Cryst.
7
,
405
(
1954
).
17.
L. S.
Bartell
,
J. Chem. Phys.
23
,
1219
(
1955
);
L. S.
Bartell
,
38
,
1827
(
1963
); ,
J. Chem. Phys.
K.
Kuchitsu
and
L. S.
Bartell
,
J. Chem. Phys.
35
,
1945
(
1961
).,
J. Chem. Phys.
18.
L. S.
Bartell
and
L. O.
Brockway
,
J. Chem. Phys.
32
,
512
(
1960
).
19.
H. L.
Cox
, Jr.
and
R. A.
Bonham
,
J. Chem. Phys.
47
,
2599
(
1967
).
20.
C.
Tavard
,
D.
Nicolas
, and
M.
Rouault
,
J. Phys. Chem.
64
,
540
(
1967
).
21.
R. F.
Pohler
and
H. P.
Hansen
,
J. Chem. Phys.
42
,
2347
(
1965
).
22.
D. R.
Herschbach
and
V. W.
Laurie
,
J. Chem. Phys.
35
,
458
(
1961
);
E. R.
Lippincott
and
R.
Schroeder
,
J. Chem. Phys.
23
,
1131
(
1955
).,
J. Chem. Phys.
23.
O.
Bastiansen
and
M.
Traetteberg
,
Acta Cryst.
13
,
1108
(
1960
);
Y.
Morino
,
Acta Cryst.
13
,
1107
(
1960
); ,
Acta Crystallogr.
Y.
Morino
,
S. J.
Cyvin
,
K.
Kuchitsu
, and
T.
Iijima
,
J. Chem. Phys.
36
,
1109
(
1962
).
24.
E.
Meisingseth
and
S. J.
Cyvin
,
Acta Chem. Scand.
16
,
2452
(
1962
);
G.
Nagarajan
and
E. R.
Lippincott
,
J. Chem. Phys.
42
,
1809
(
1965
).
25.
L. S.
Bartell
and
B. L.
Carroll
,
J. Chem. Phys.
42
,
1135
(
1965
).
26.
R. M.
Badger
,
J. Chem. Phys.
2
,
128
(
1934
).
27.
L. S. Bartell, in Physical Methods in Chemistry, edited by A. Weissberger and B. W. Rossiter (Interscience, New York, to be published), 4th ed. The effects of systematic interactions implicit in Eq. (27) of this reference were not taken into account.
28.
E. J. Jacob, H. B. Thompson, and L. S. Bartell, “Structure Analyses Combining Electron Diffraction and Microwave Data: Study of XeOF4,” J. Mol.Struct. (to be published);
F. B. Clippard, Jr., E. J. Jacob, and J. S. Bartell, “Structure of IOF5: An Electron Diffraction Study” (unpublished).
29.
E. J.
Jacob
and
L. S.
Bartell
,
J. Chem. Phys.
53
,
2231
(
1970
).
30.
K. S.
Pitzer
and
W. E.
Donath
,
J. Am. Chem. Soc.
81
,
3213
(
1959
);
S.
Lifson
and
A.
Warshel
,
J. Chem. Phys.
49
,
5116
(
1968
).
31.
J. R.
Durig
and
D. W.
Wertz
,
J. Chem. Phys.
49
,
2118
(
1968
);
H. Kambara, A. Hirakawa, M. Tsuboi, and K. Kuchitsu (unpublished).
32.
W. J.
Adams
,
H. J.
Geise
, and
L. S.
Bartell
,
J. Am. Chem. Soc.
92
,
5013
(
1970
).
33.
D. W. Scott, Symposium on Molecular Structure and Spectroscopy 22nd, Columbus, Ohio, 1962.
34.
W. J.
Laffertv
,
D. W.
Robinson
,
R. V.
St. Louis
,
J. W.
Russell
, and
H. L.
Strauss
,
J. Chem. Phys.
50
,
124
(
1969
);
G. C.
Engerholm
,
A. C.
Luntz
,
W. D.
Gwinn
, and
D. O.
Harris
,
J. Chem. Phys.
50
,
2446
(
1969
).,
J. Chem. Phys.
35.
H. J.
Geise
,
W. J.
Adams
, and
L. S.
Bartell
,
Tetrahedron
25
,
3045
(
1969
);
A.
Almenningen
,
H. M.
Seip
, and
T.
Willadsen
,
Acta Chem. Scand.
23
,
2748
(
1969
).
36.
R. E.
LaVilla
and
S. H.
Bauer
,
J. Chem. Phys.
33
,
182
(
1960
).
37.
See Table 3.5 in W. J. Adams, Doctoral dissertation, The University of Michigan, Ann Arbor, Mich., 1969.
38.
A. G. Robiette (private communication to L. S. Bartell, 1969).
39.
R. C.
Lord
,
M. A.
Lynch
, Jr.
,
W. C.
Schumb
, and
E. J.
Slowinski
, Jr.
,
J. Am. Chem. Soc.
72
,
522
(
1950
).
40.
The latter may correspond to the broad, unassigned band centered approximately at 310 cm−1 in Fig. 3 of Ref. 8.
41.
R. D.
Burbank
and
F. N.
Bensey
,Jr.
,
J. Chem. Phys.
27
,
981
(
1957
);
R. D.
Burbank
,
Acta Cryst.
15
,
1207
(
1962
).
42.
J.
Donohue
,
J. Chem. Phys.
30
,
1618
(
1959
);
L. L.
Lohr
and
W. N.
Lipscomb
,
J. Chem. Phys.
36
,
2225
(
1962
); ,
J. Chem. Phys.
J.
Donohue
,
Acta Cryst.
18
,
1018
(
1965
).
43.
V.
Schettino
,
M. P.
Marzocchi
, and
S.
Califano
,
J. Chem. Phys.
51
,
5264
(
1969
).
44.
E. W.
Kaiser
,
J. S.
Muenter
,
W.
Klemperer
, and
W. E.
Falconer
,
J. Chem. Phys.
53
,
53
(
1970
).
45.
W. E.
Falconer
,
A.
Büchler
,
J. L.
Stauffer
, and
W.
Klemperer
,
J. Chem. Phys.
48
,
312
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.