A theory of the vibronic coupling in molecular exciton states in the presence of a radiation field is developed. Electronic and nuclear motion in isolated molecules is assumed to be separable, crystal states with two or more molecular excitations on different sites are excluded, and exciton–lattice phonon interactions ignored. The coupling process is examined, without using perturbation theory, from three points of view. In the first method solutions of a classical oscillating dipole model are derived. The second method develops the equivalent quantum theory, without the restriction to dipole interactions, by a one‐step diagonalization of the crystal Hamiltonian. In the third method explicit solutions of Agranovitch's polariton theory are obtained. The latter is also extended to include photon Umklapp processes and a connection established with calculations which use retarded dipole sums. It is shown that the polariton branches, corresponding to a stack of vibronic levels belonging to the same electronic state of the molecule, are coupled by a cooperative (or collective) interaction. As a result for intense transitions (f≃3) the lowest Coulombic exciton and the highest k = 0 polariton can be pushed far away from the other states and transformed into cooperative states. The exciton carries with it practically all the intensity of the original transitions and the k = 0 polariton leads to the phenomenon of metallic reflection. The connection with previous treatments of the transition from weak to strong vibronic coupoing is discussed and the concept of very strong coupling defined as an extreme Simpson–Peterson limit.

1.
Anthracene has been the most studied of the aromatic hydrocarbons, see A. Bree and L. E. Lyons, J. Chem. Soc. 1956, 2662;
S.
Morisova
,
Opt. Spektrosk.
22
,
566
(
1967
)
[
S.
Morisova
,
Opt. Spectrosc.
22
,
310
(
1966
)];
A.
Matsui
,
Y.
Ishii
, and
T.
Hikita
,
J. Phys. Soc. (Japan)
21
,
2091
(
1966
);
A.
Matsui
and
Y.
Ishii
,
J. Phys. Soc. (Japan)
23
,
581
(
1967
); ,
J. Phys. Soc. Jpn.
W. H.
Wright
,
Chem. Rev.
67
,
581
(
1967
);
L. B.
Clark
,
J. Chem. Phys.
51
,
5719
(
1969
).
2.
B. G.
Anex
and
W. T.
Simpson
,
Rev. Mod. Phys.
32
,
466
(
1960
).
3.
B. G.
Anex
,
Mol. Cryst. Liquid Cryst.
1
,
1
(
1966
).
4.
B. M.
Fanconi
,
G. A.
Gerhold
, and
W. T.
Simpson
,
Mol. Cryst. Liquid Cryst.
6
,
41
(
1969
).
5.
Dependence of the dielectric constant on wave vector k.
6.
J. J.
Hopfield
,
Phys. Rev.
112
,
1555
(
1958
).
7.
V. M.
Agranovitch
,
Zh. Eksp. Teor. Fiz.
37
,
430
(
1959
)
[
V. M.
Agranovitch
,
Sov. Phys.‐JETP
10
,
307
(
1960
)].
8.
S. I.
Pekar
,
Zh. Eksp. Teor. Fiz.
33
,
1022
(
1957
)
[
S. I.
Pekar
,
Sov. Phys.‐JETP
6
,
785
(
1958
)].
9.
U.
Fano
,
Phys. Rev.
103
,
1202
(
1956
);
U.
Fano
,
118
,
451
(
1960
).,
Phys. Rev.
10.
J. J.
Hopfield
and
D. G.
Thomas
,
Phys. Rev.
132
,
563
(
1963
).
11.
S. I.
Pekar
,
Fiz. Tverd. Tela
4
,
1301
(
1962
)
[
S. I.
Pekar
,
Sov. Phys.‐Solid State
4
,
953
(
1962
)].
12.
C. W.
Deutsche
and
C. A.
Mead
,
Phys. Rev.
138
,
A63
(
1965
).
13.
Y.
Osaka
,
Y.
Imai
, and
Y.
Takeuti
,
J. Phys. Soc. (Japan)
24
,
236
(
1968
).
14.
G. D.
Mahan
and
G.
Obermair
,
Phys. Rev.
183
,
834
(
1969
).
15.
C.
Mavroyannis
,
J. Math. Phys.
11
,
491
(
1970
).
16.
V. M.
Agranovitch
and
Y. V.
Konobeev
,
Fiz. Tverd. Tela
3
,
360
(
1961
)
[
V. M.
Agranovitch
and
Y. V.
Konobeev
,
Sov. Phys.‐Solid State
3
,
260
(
1961
)].
17.
W. C.
Tait
and
R. L.
Weiher
,
Phys. Rev.
166
,
769
(
1968
).
18.
W. C.
Tait
and
R. L.
Weiher
,
Phys. Rev.
178
,
1404
(
1969
).
19.
L. N.
Ovander
,
Usp. Fiz. Nauk
86
,
3
(
1965
).
[
L. N.
Ovander
,
Sov. Phys.‐Usp.
8
,
337
(
1965
)].
20.
By molecular crystals we also mean crystals of the ionic dyes like 1,5‐bis‐ (dimethylamino) pentamethinium perchlorate or BDP for short.
21.
V. I.
Permogorov
,
L. A.
Serdyukova
, and
M. D.
Frank‐Kamenetskii
,
Opt. Spektrosk.
25
,
77
(
1968
)
[
V. I.
Permogorov
,
L. A.
Serdyukova
, and
M. D.
Frank‐Kamenetskii
,
Opt. Spectrosc.
25
,
38
, (
1968
)].
22.
Both coupling interactions are parts of the total electromagnetic coupling but because we work in Coulomb gauge the transverse part (light coupling) and longitudinal part (vibronic coupling) occur separately.
23.
Coupling of exciton with wave vector k to photons with wave vector k+K where K is a reciprocal lattice vector.
24.
W. T.
Simpson
,
Radiation Res.
20
,
87
(
1963
).
25.
M. A.
Ball
and
A. D.
McLachlan
,
Proc. Roy. Soc. (London)
A282
,
433
(
1964
).
26.
M. R.
Philpott
,
J. Phys. C
1
,
42
(
1968
).
27.
D. P.
Craig
and
P. D.
Dacre
,
Proc. Roy. Soc. (London)
A310
,
297
(
1969
).
28.
E. I.
Rashba
,
Zh. Eksp. Teor. Fiz.
50
,
1164
(
1966
)
[
E. I.
Rashba
,
Sov. Phys.‐JETP
23
,
7081
(
1966
)].
29.
S.
Takeno
,
J. Chem. Phys.
46
,
2481
(
1967
).
30.
M. R.
Philpott
,
J. Chem. Phys.
47
,
2534
,
4437
(
1967
);
M. R.
Philpott
,
48
,
5631
(
1968
).,
J. Chem. Phys.
31.
D. P.
Chock
and
S. A.
Rice
,
J. Chem. Phys.
49
,
4345
(
1968
).
32.
E. I.
Rashba
,
Zh. Eksp. Teor. Fiz.
54
,
542
(
1968
)
[
E. I.
Rashba
,
Sov. Phys.‐JETP
27
,
292
(
1968
)].
33.
M. R.
Philpott
,
J. Chem. Phys.
51
,
2616
(
1969
).
34.
M. H.
Cohen
and
F.
Keffer
,
Phys. Rev.
99
,
1128
(
1955
).
35.
(a) For example, see,
W. T.
Simpson
and
D. L.
Peterson
,
J. Chem. Phys.
26
,
588
(
1957
). lpar;b) There is no damping in the oriented gas model so that reflection is 100%, i.e., radiation incident on a crystal surface does not penetrate in this “stopping band” region.
36.
D. P.
Craig
,
L. E.
Lyons
, and
J. R.
Walsh
,
Mol. Phys.
4
,
204
(
1961
).
37.
D. P.
Craig
and
R. D.
Gordon
,
Proc. Roy. Soc. (London)
A288
,
69
(
1965
).
38.
H. C.
Wolf
,
Z. Naturforsch.
13a
,
414
(
1958
).
39.
R. M.
Hochstrasser
,
J. Chem. Phys.
40
,
2559
(
1964
).
40.
P. Gramaccioni (private communication).
41.
G. D.
Mahan
,
J. Chem. Phys.
41
,
2930
(
1964
).
42.
G. D.
Mahan
,
J. Chem. Phys.
43
,
1569
(
1965
).
43.
M. R.
Philpott
,
J. Chem. Phys.
50
,
3925
,
5117
(
1969
).
44.
fu = 2mωuξu2d2/ℏe where ξu2 is the Franck‐Condon factor and d the transition dipole.
45.
M. Born and E. Wolf, Principles of Optics (Pergammon Press, Ltd., London, 1959), Chap. 2.
46.
Provided spatial dispersion is insufficient to permit two propagating fields of the same frequency inside the crystal. See Refs. (10) and (14).
47.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, England, 1954), p. 248.
48.
Equations equivalent to (3.16) have been derived by
A.
Herzenberg
and
A.
Modinos
,
Proc. Phys. Soc. (London)
87
,
597
(
1966
)
and
R. K.
Bullough
,
J. Chem. Phys.
48
,
3712
(
1968
) for the discussion of hypochromism in helical polymers.
49.
V. M.
Agranovitch
,
Fiz. Tverd. Tela
3
,
811
(
1961
)
[
V. M.
Agranovitch
,
Sov. Phys.‐Solid State
3
,
592
(
1961
)].
50.
S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, Inc., New York, 1967), p. 105.
51.
Provided the BO approximation is valid and the stack of vibronic transitions is well separated from the other electronic states. Some dyes like BDP appear to satisfy this requirement.
52.
W. H.
Offen
and
R. A.
Beardslee
,
J. Chem. Phys.
48
,
3584
(
1968
).
53.
For a summary see A. M. Lesk, in Quantum Aspects of Polypeptides and Polynucleotides, M. Weissbluth, Ed. (Interscience, Publishers, Inc., New York, 1964), p. 183.
54.
Reference (7), Eq. (44) et seq.
55.
For crystals with a center of symmetry.
56.
A. S.
Davydov
and
V. A.
Onishchuk
,
Phys. Status Solidi
24
,
373
(
1967
).
57.
R.
Silbey
,
J.
Jortner
, and
S. A.
Rice
,
J. Chem. Phys.
42
,
1515
(
1965
).
58.
M. R. Philpott, “Theory of Molecular Polaritons. Application to the Reflection Spectrum of Anthracene, 1,5‐bis‐ (dimethylamine)‐pentamethinium perchlorate and some other cationic dye crystals,” J. Chem. Phys. (to be published).
59.
W. T.
Simpson
and
D. L.
Peterson
,
J. Chem. Phys.
26
,
588
(
1957
).
60.
J. J.
Hopfield
and
D. G.
Thomas
,
J. Phys. Chem. Solids
12
,
276
(
1960
).
This content is only available via PDF.
You do not currently have access to this content.