The relaxation of sulfur hexafluoride has been monitored by observation of infrared absorption intensities following passage of an infrared laser pulse through the gas. The laser pulse saturates a small number of rotational lines in the ν3 ← 0 transition of SF6 at 944 cm−1, producing a transient “hole” in the absorption spectrum at that frequency. This hole is filled in very rapidly by rotational relaxation processes. The specific vibrational excitation is, at essentially the same time, transformed into a vibrational temperature in excess of the gas's translational temperature, by means of very efficient vibration ↔ vibration energy transfer collisions. The energy released in this step also heats the gas translationally by the order of 25°K. The vibrational temperature then relaxes to the translational temperature by a binary collision process, with pτ = (122 ± 8) μsec·torr in pure SF6. The rate‐controlling step is concluded to be the vibration→translation relaxation of the ν6 level at 363 cm−1. The mean efficiency per collision of this step has been measured for He, Ne, Ar, Kr, C2H6, (CH3)2O, CH4, CH3Br, CHF2Cl, H2O, H2, N2, and Cl2, in addition to SF6 itself. A transient absorption spectrum arising from the vibrationally hot SF6 is also given. The slowest relaxation observed in the system is the bulk cooling of the translational temperature of the gas, which occurs in the order of milliseconds under typical experimental conditions. The dominant mechanism for this relaxation appears to be cooling by thermal conduction.

1.
T.
Oka
,
J. Chem. Phys.
49
,
4234
(
1968
); earlier references therein.
2.
A. M.
Ronn
and
D. R.
Lide
, Jr.
,
J. Chem. Phys.
47
,
3669
(
1967
).
3.
J.
Lemaire
,
J.
Houriez
,
J.
Bellet
, and
J.
Thibault
,
Compt. Rend.
B268
,
922
(
1969
).
4.
C. B.
Moore
,
Accounts Chem. Res.
2
,
103
(
1969
), and references therein.
5.
C.
Rhodes
,
M. J.
Kelly
, and
A.
Javan
,
J. Chem. Phys.
48
,
5730
(
1968
).
6.
I.
Burak
,
A. V.
Nowak
,
J. I.
Steinfeld
, and
D. G.
Sutton
,
J. Chem. Phys.
51
,
2275
(
1969
).
7.
O. R.
Wood
and
S. E.
Schwarz
,
Appl. Phys. Letters
11
,
88
(
1967
).
8.
O. R.
Wood
and
S. E.
Schwarz
,
Appl. Phys. Letters
12
,
263
(
1968
).
9.
C. K. N.
Patel
and
R. E.
Slusher
,
Phys. Rev. Letters
19
,
1019
(
1967
).
10.
C. K. N.
Patel
and
R. E.
Slusher
,
Phys. Rev. Letters
20
,
1087
(
1968
).
11.
J. P.
Gordon
,
C. H.
Wang
,
C. K. N.
Patel
,
R. E.
Slusher
, and
W. J.
Tomlinson
,
Phys. Rev.
179
,
294
(
1969
).
12.
C. K. Rhodes, Ph.D. thesis, Massachusetts Institute of Technology, 1969.
13.
A. Szöke and C. K. Rhodes (unpublished).
14.
I.
Burak
,
A. V.
Nowak
,
J. I.
Steinfeld
, and
D. G.
Sutton
,
J. Quant. Spectry. Radiative Transfer
9
,
959
(
1969
).
15.
H.
Brunet
and
M.
Perez
,
Compt. Rend.
B267
,
1084
(
1968
).
16.
O. R.
Wood
,
P. L.
Gordon
, and
S. E.
Schwarz
,
IEEE J. Quantum Electron.
5
,
502
(
1969
).
17.
G. Flynn (private communications).
18.
H.
Brunet
,
Compt. Rend.
B264
,
1721
(
1967
).
19.
E. B.
Treacy
,
Phys. Letters
27A
,
421
(
1968
).
20.
G. B.
Hocker
and
C. L.
Tang
,
Phys. Rev. Letters
21
,
591
(
1968
).
21.
A. Szöke (private communication).
22.
I.
Burak
,
J. I.
Steinfeld
, and
D. G.
Sutton
,
J. Appl. Phys.
39
,
4464
(
1968
).
23.
R. L.
Abrams
and
A.
Dienes
,
Appl. Phys. Letters
14
,
237
(
1969
).
24.
T. D.
Carroll
and
S.
Marcus
,
Phys. Letters
27A
,
590
(
1968
).
25.
P. K.
Cheo
and
R. L.
Abrams
,
Appl. Phys. Letters
14
,
47
(
1969
).
26.
D. S.
Kliger
and
A. C.
Albrecht
,
J. Chem. Phys.
50
,
4109
(
1969
).
27.
W. A.
Rosser
, Jr.
,
A. D.
Wood
, and
E. T.
Gerry
,
J. Chem. Phys.
50
,
4996
(
1969
).
28.
H.
Brunet
,
Compt. Rend.
B268
,
1750
(
1969
).
29.
P.
Rabinowitz
,
R.
Keller
, and
J. T.
La Tourrette
,
Appl. Phys. Letters
14
,
276
(
1969
).
30.
F.
Shimizu
,
Appl. Phys. Letters
14
,
378
(
1969
).
31.
The populations in Fig. 8 have been calculated on the assumption of an equilibrium vibrational temperature in the system. For this purpose, the degeneracy of multiply excited levels is given by
, where ni is the number of quanta excited, and gi the degeneracy, of the ith vibrational mode.
32.
J. T.
Yardley
and
C. B.
Moore
,
J. Chem. Phys.
46
,
4491
(
1967
).
33.
K. E.
Shuler
,
Phys. Fluids
2
,
442
(
1959
).
34.
T. C. Cottrell and J. C. McCoubrey, Molecular Energy Transfer in Gases (Butterworth, London, 1961), p. 75.
35.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
36.
J. D.
Lambert
,
D. G.
Parks‐Smith
, and
J. L.
Stretton
,
Proc. Roy. Soc. (London)
A282
,
380
(
1964
).
37.
F. I.
Tanczos
,
J. Chem. Phys.
25
,
439
(
1956
).
38.
J. L.
Stretton
,
Trans. Faraday Soc.
61
,
1053
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.