The attachment of water molecules to the ions F, Cl, Br, I, O2, and NO2 was observed in the gas phase at water pressures from 0.1 to 1.5 torr and 292°K with an alpha‐particle ion source attached to a mass spectrometer. The negative ions were produced by adding a suitable compound RX to an 8‐torr oxygen carrier gas. The reaction involved was: RX+O2=X+R+O2. Equilibrium constants for a number of clustering reactions (n − 1, n): X(H2O)n−1+H2O=X(H2O)n were determined. The hydration of the ions falls off with increase of ionic size. Comparison of the free energies ΔG°2,3 and ΔG°3,4 of the halogen and alkali ions with the Pauling radii shows that negative ions solvate more strongly than positive ions. Comparison with the Latimer, Pitzer, and Slanski radii shows that these radii predict stronger (2,3) and (3, 4) hydration for positive ions. The radii based on x‐ray measurements predict equal (2, 3) and (3, 4) hydration energies for positive and negative ions. The present data suggest that the single ion hydration energies derived by Latimer et al. and Verwey are either incorrect or due to stronger solvation by negative ions not in the inner hydration shell but in the subsequent hydration interactions.

1.
P.
Kebarle
and
A. M.
Hogg
,
J. Chem. Phys.
42
,
758
(
1965
).
2.
P.
Kebarle
,
S. K.
Searles
,
A.
Zolla
,
J.
Scarborough
, and
M.
Arshadi
,
J. Am. Chem. Soc.
89
,
6393
(
1967
).
3.
A. M.
Hogg
,
R. M.
Haynes
, and
P.
Kebarle
,
J. Am. Chem. Soc.
88
,
28
(
1966
).
4.
S. K.
Searles
and
P.
Kebarle
,
J. Phys. Chem.
72
,
742
(
1968
).
5.
A. M.
Hogg
and
P.
Kebarle
,
J. Chem. Phys.
43
,
445
(
1965
).
6.
P.
Kebarle
,
R. M.
Haynes
, and
G. J.
Collins
,
J. Am. Chem Soc.
89
,
5753
(
1967
).
7.
P.
Kebarle
,
Advan. Chem. Ser.
72
,
24
(
1968
).
8.
P.
Kebarle
and
R. M.
Haynes
,
J. Chem. Phys.
47
,
1676
(
1967
).
9.
The attachment of the chloromethanes to Cl was made subject of a study which will be published separately (J. Scarborough and P. Kebarle).
10.
Dry oxygen passed through molecular sieve traps kept at liquid‐nitrogen temperatures.
11.
J. L.
Moruzzi
and
A. V.
Phelps
,
J. Chem. Phys.
45
,
4617
(
1966
).
12.
R. M.
Reese
and
V.
Dibeler
,
J. Chem. Phys.
24
,
1175
(
1955
).
13.
Thermochemical data unless otherwise stated were taken from V. I. Vedeneyev, L. V. Gurvich, V. N. Kondratiev, V. A. Medvedev, and Ye. L. Frankevich, Bond Energies, Ionization Potentials and Electron Affinities (Edward Arnold and Co., London, 1966).
14.
J. L.
Pack
and
A. V.
Phelps
,
J. Chem. Phys.
44
,
1870
(
1966
).
15.
L. G.
Wayne
and
D. M.
Yost
,
J. Chem. Phys.
19
,
41
(
1951
).
16.
D. R.
Rosseinsky
,
Chem. Rev.
65
,
467
(
1955
).
17.
W. M.
Latimer
,
K. S.
Pitzer
, and
C. M.
Slanski
,
J. Chem. Phys.
7
,
108
(
1935
).
18.
E. T.
Verwey
,
Chem. Weekblad
37
,
530
(
1940
).
19.
S. K. Searles and P. Kebarle, Can. J. Chem. (to be published).
20.
B. S.
Gourary
and
F. J.
Adrian
,
Solid State Phys.
10
,
127
(
1960
).
21.
E. T.
Verwey
,
Rec. Trav. Chim.
61
,
127
(
1942
).
22.
A. D.
Buckingham
,
Discussions Faraday Soc.
24
,
151
(
1957
).
23.
F.
Vaslow
,
J. Phys. Chem.
67
,
2773
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.