The microwave spectra of CH3NO and CD3NO have been observed and analyzed. The barriers to internal rotation are 1137 ± 5 and 1095 ± 7 cal/mole for CH3NO and CD3NO, respectively, a difference of 42 cal/mole which is thought to be real. The barriers were calculated by the internal‐axis method with retention of higher terms in the usual Fourier expansion of the rotational energy and computation of the torsional integrals in the harmonic‐oscillator approximation. The theoretical parameters were fitted to the data by a least‐squares method and the uncertainties reported are standard deviations. Transitions having comparable Stark and quadrupole energies were used to calculate the dipole moment. Secular equations of second or third order were solved for each of the data points. The dipole moment components are μa = 2.240 ± 0.001 D, μb = 0.522 ± 0.006 D, and μtotal = 2.300 ± 0.002 D. The quadrupole coupling constants of CH3NO are 0.50 ± 0.16, −6.016 ± 0.031, and 5.518 ± 0.031 for the components along the a, b, and c axes, respectively. The corresponding values for CD3NO are 0.60 ± 0.07, −6.007 ± 0.020, and 5.411 ± 0.020. The N=O and C–N distances are not well determined by the data. The CNO angle is 112.6 ± 1.0°.

1.
D. R. Herschbach, “Bibliography for Hindered Internal Rotation and Microwave Spectroscopy,” University of California, Lawrence Radiation Laboratory, UCRL‐10404, October 1962.
2.
R. F.
Curl
, Jr.
,
V. M.
Rao
,
K. V. L. N.
Sastry
, and
J. A.
Hodgeson
,
J. Chem. Phys.
39
,
3335
(
1963
).
3.
V. M.
Rao
,
J. T.
Yardley
, and
R. F.
Curl
, Jr.
,
J. Chem. Phys.
42
,
284
(
1965
).
4.
J. E.
Boggs
,
D.
Coffey
, Jr.
, and
J. C.
Davis
, Jr.
,
J. Phys. Chem.
68
,
2383
(
1964
).
5.
B. G. Gowenlock and J. Trotman, J. Chem. Soc. 1955, 4190.
6.
B. G. Gowenlock and J. Trotman, J. Chem. Soc. 1956, 1670.
7.
L. Batt, J. K. Brown, B. G. Gowenlock, and K. E. Thomas, J. Chem. Soc. 1962, 37.
8.
L. Batt, B. G. Gowenlock, and J. Trotman, J. Chem. Soc. 1960, 2222.
9.
J. G.
Calvert
,
S. S.
Thomas
, and
P. L.
Hanst
,
J. Am. Chem. Soc.
82
,
1
(
1960
).
10.
M.
Mizushima
,
J. Chem. Phys.
21
,
539
(
1953
).
11.
S.
Golden
and
E. B.
Wilson
, Jr.
,
J. Chem. Phys.
16
,
669
(
1948
).
12.
K. T.
Hecht
and
D. M.
Dennison
,
J. Chem. Phys.
26
,
31
(
1957
).
13.
R. C. Woods, Ph.D. thesis, Harvard University, April 1965.
14.
D. R.
Hershbach
,
J. Chem. Phys.
31
,
91
(
1959
).
15.
D. R.
Hershbach
and
V. W.
Laurie
,
J. Chem. Phys.
40
,
3142
(
1964
).
16.
R. W.
Kilb
,
C. C.
Lin
, and
E. B.
Wilson
, Jr.
,
J. Chem. Phys.
26
,
1695
(
1957
).
17.
E.
Tannenbaum
,
R. J.
Myers
, and
W. D.
Gwinn
,
J. Chem. Phys.
25
,
42
(
1956
).
18.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw‐Hill Book Co., New York, 1955).
19.
R. A. Beaudet, Ph.D. thesis, Harvard University, September 1962.
20.
J. K.
Bragg
,
Phys. Rev.
74
,
533
(
1948
).
21.
D. R.
Lide
, Jr.
,
J. Chem. Phys.
27
,
343
(
1957
).
22.
D.
Kivelson
,
J. Chem. Phys.
26
,
215
(
1956
).
23.
C. C.
Lin
and
J. D.
Swalen
,
Rev. Mod. Phys.
31
,
841
(
1959
).
24.
D. F.
Eagle
,
T. L.
Weatherly
, and
Q.
Williams
,
J. Chem. Phys.
44
,
847
(
1966
).
25.
J. M. B.
Kellogg
,
I. I.
Rabi
,
N. F.
Ramsey
, Jr.
, and
J. R.
Zacharias
,
Phys. Rev.
57
,
677
(
1940
).
26.
C. P. Smyth, Dielectric Behavior and Structure, (McGraw‐Hill Book Co., New York, 1955).
27.
R. A.
Hill
and
T. H.
Edwards
,
J. Mol. Spectry.
9
,
494
(
1962
).
28.
W.
Lüttke
,
Z. Elektrochem.
61
,
976
(
1957
).
29.
W.
Lüttke
,
Z. Elektrochem.
61
,
302
(
1957
).
30.
L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, N.Y., 1960), 3rd Ed.
31.
M. I.
Davis
,
J. E.
Boggs
,
D.
Coffey
, Jr.
, and
H. P.
Hanson
,
J. Phys. Chem.
69
,
3727
(
1965
).
32.
C. R.
Quade
and
C. C.
Lin
,
J. Chem. Phys.
38
,
540
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.