The rotational constants Be, the vibrational frequencies ωe, the vibration–rotation interaction constants αe, and the anharmonic constants xe of 160 diatomic molecules are examined in order to determine whether or not there exist consistent relationships between them. Basing the investigation on the Dunham analysis the following correlations are found to be valid within about 5%: (1) The Dunham constants a1 and a2 are identical for almost all the molecules examined. (2) For diatomics formed from atoms belonging to the ith and jth columns of the periodic table the following monotonic relations exist: Be / ωe = Kijωe1 / 2 + Lij, αe/Be = Kij′ωe1 / 2 + Lij, xe = Kij″ωe1 / 2 + Lij. These equations are shown to be interrelated by virtue of the constancy of a1 and a2. The scope and limitations of the correlations are discussed and several examples are given pertaining to their use for the resolution of incorrect or ambiguous spectroscopic information.

1.
D.
Steele
,
E. R.
Lippincott
, and
J. T.
Vanderslice
,
Rev. Mod. Phys.
34
,
239
(
1962
).
2.
F.
Jenč
,
J. Chem. Phys.
47
,
127
(
1967
).
3.
(a) G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950), pp. 453ff.
The most famous of these relationships is Badger’s rule [
R. M.
Badger
,
J. Chem. Phys.
2
,
128
(
1934
);
R. M.
Badger
,
3
,
710
(
1935
)]. ,
J. Chem. Phys.
(b) G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950), pp. 107ff.
4.
A related discussion was given more recently by J. R. Platt, in Encyclopedia of Physics, S. Flügge, Ed. (Springer‐Verlag, Berlin, 1961), Vol. 37/2, Sec. 64.
5.
A. L. G.
Rees
,
Proc. Phys. Soc. (London)
59
,
998
(
1947
).
6.
J. L.
Dunham
,
Phys. Rev.
41
,
721
(
1932
).
7.
D. H.
Herschbach
and
V. W.
Laurie
,
J. Chem. Phys.
35
,
458
(
1961
).
8.
The constants F2,F3, and F4 are related to the Dunham constants a0,a1, and a2 by the relations: F2 = 4πμω62 = 2a0/re,F3/F2 = −a1/re, and F4/F2 = a2/re2.
9.
C. L.
Pekeris
,
Phys. Rev.
45
,
98
(
1934
).
10.
W.
Gordy
,
Pure Appl. Chem.
11
,
403
(
1965
).
11.
A.
Honig
,
M.
Mandel
,
M. L.
Stiteh
, and
C. H.
Townes
,
Phys. Rev.
96
,
629
(
1954
).
12.
B. P.
Fabrecand
,
R. O.
Carlson
,
C. A.
Lee
, and
I. I.
Rabe
,
Phys. Rev.
91
,
1403
(
1953
).
13.
D. F.
Smith
,
M.
Tidwell
, and
D. V. P.
Williams
,
Phys. Rev.
77
,
420L
(
1950
).
14.
Masses of the isotopes taken from
F.
Elvering
,
L. A.
Konig
, and
A. H.
Wapstra
,
Nucl. Phys.
18
,
529
(
1960
).
15.
P. T.
Rao
and
K. R.
Rao
,
Indian J. Phys.
23
,
185
(
1949
);
P. T.
Rao
,
Indian J. Phys.
24
,
434
(
1950
); ,
Indian J. Phys.
P. T.
Rao
and
K. R.
Rao
,
Indian J. Phys.
28
,
18
(
1954
).,
Indian J. Phys.
16.
R.
Onaka
,
J. Chem. Phys.
27
,
374
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.