An inductive method for a systematic selection of energy functions of interatomic interactions in large families of molecules is suggested and is applied to the family of cycloalkane and n‐alkane molecules. Equilibrium conformations, vibrational frequencies, and excess enthalpies, including strain energies and vibrational enthalpies, are all derived from the same set of energy functions. The energy‐function parameters are optimized by a least‐squares algorithm to give the best possible agreement with a large amount and variety of observed data. Analytical derivatives of the various calculated quantities with respect to the energy parameters help to facilitate the computational procedures. The resulting agreement with experiment is used as a measure of success of the energy functions with optimized parameters, referred to as “consistent force field” (CFF). Different CFF's are compared and selected according to their relative success. Energy functions commonly used in conformational analysis are examined in preliminary consistent‐force‐field calculations and are found inadequate. Considerable imporvement is obtained when Coulomb interactions between residual atomic charges are included, and when interactions between atoms bonded to a common atom are represented by a Urey–Bradley‐type force field, while Lennard‐Jones potentials are used for nonbonded interactions between atoms separated by more than one atom. Vibrational frequencies as well as vibrational molecular enthalpies are derived for all cycloalkanes C5 through C12. The spectroscopic force constants are derived from the CFF as functions of molecular conformations. Agreement with available spectroscopic assignments of frequencies is reasonably good. A few improvements are suggested for cyclopentane assignments. The path and moment of inertia of pseudorotation in cyclopentane are calculated. Cyclodecane frequency assignments, based on the derived conformational C2h symmetry, are suggested for the first time. Calculated excess enthalpies of C5H10 and medium cycloalkanes agree well with observed values. Contributions of vibration–translation–rotation are shown to amount to a significant part of the excess enthalpy.

1.
J. B.
Hendrickson
,
J. Am. Chem. Soc.
83
,
4537
(
1961
).
2.
J. B.
Hendrickson
,
J. Am. Chem. Soc.
86
,
4854
(
1964
).
3.
K. B.
Wiberg
,
J. Am. Chem. Soc.
87
,
1070
(
1965
).
4.
M.
Bixon
and
S.
Lifson
,
Tetrahedron
23
,
769
(
1967
).
5.
J. B.
Hendrickson
,
J. Am. Chem. Soc.
89
,
7036
(
1967
).
6.
J. B.
Hendrickson
,
J. Am. Chem. Soc.
89
,
7043
(
1967
).
7.
J. B.
Hendrickson
,
J. Am. Chem. Soc.
89
,
7047
(
1967
).
8.
G. J.
Gleicher
and
P. R.
Schleyer
,
J. Am. Chem. Soc.
89
,
582
(
1967
).
9.
N. L.
Allinger
,
M. A.
Miller
,
F. A.
Van Catledge
, and
J. A.
Hirsch
,
J. Am. Chem. Soc.
89
,
4345
(
1967
).
10.
M. Bixon, H. Dekker, J. D. Dunitz, H. Eser, S. Lifson, C. Mosselman, J. Sicher, and M. Svoboda, Chem. Commun. 1967, 360.
11.
J. D.
Dunitz
,
H.
Eser
,
M.
Bixon
, and
S.
Lifson
,
Helv. Chim. Acta
50
,
1572
(
1967
).
12.
E. J.
Jacob
,
H. B.
Thompson
, and
L. S.
Bartell
,
J. Chem. Phys.
47
,
3736
(
1967
).
13.
For a review, see G. N. Ramachandran and V. Sasisekharan, Advan. Protein Chem. (unpublished data);
H. A.
Scheraga
,
Advan. Phys. Org. Chem.
6
,
103
(
1968
).
14.
Jacob et al.12 rightly pointed out (Footnote 16 in Ref. 12) the inconsistency of using valence force‐field constants superimposed by nonbonded interactions. Yet their nonbonded interactions are also incompatible with the Urey‐Bradely constants. Bixon and Lifson4 also noted the incompatibility between force constants of spectroscopy and the energy functions of conformational analysis, and therefore considered the bending force constant as an adaptable parameter, not transferred from spectroscopy.
15.
J. H.
Schachtschneider
and
R. G.
Snyder
,
Spectrochim. Acta
19
,
117
(
1963
).
16.
R. G.
Snyder
and
J. H.
Schachtschneider
,
Spectrochim. Acta
21
,
169
(
1965
).
17.
J.
Overend
and
J. R.
Scherer
,
J. Chem. Phys.
32
,
1289
(
1960
).
18.
Bixon and Lifson4 took cognizance of this necessity, and estimated the contribution of vibration‐rotation‐translation to the enthalpy of C12H24 to be 1.3 kcal/mole in excess of twice that of C6H12, using available normal‐mode calculations of these two molecules. Our calculations indicate even larger contributions (see Fig. 1). The excellent agreement (0.0∼0.3 kcal/mole) between measured excess enthalpies and calculated excess strain energies neglecting these contributions, derived by Hendrickson (Table II of Ref. 5) is, accordingly fortuitous. Note also that excess energy defined there as E0(Cn) = ΣE(Cn)−ΣE(C6), should be preferably ΣE(Cn)−(n/6)ΣE(C6), since experimental excess enthalpy is defined similarly by Eq. (10).
19.
S.
Kimel
,
A.
Ron
, and
D. F.
Hornig
,
J. Chem. Phys.
40
,
3351
(
1964
).
20.
D. F. Bradely, S. Lifson, and B. Honig, Electronic Aspects of Biochemistry, B. Pullman, Ed. (Academic Press, Inc., New York, 1964), p. 77.
21.
G. Del Re, J. Chem. Soc. 1958, 4031.
22.
A.
Veillard
and
B.
Pullman
,
J. Theoret. Biol.
4
,
37
(
1963
).
23.
D. A.
Dows
,
J. Mol. Spectry.
16
,
302
(
1965
).
24.
H.
Takahashi
,
T.
Shimanouchi
,
K.
Fukushima
, and
T.
Miyazawa
,
J. Mol. Spectry.
13
,
43
(
1964
).
25.
F. A.
Miller
and
H. R.
Golob
,
Spectrochim. Acta
20
,
1517
(
1964
).
26.
M.
Ito
,
Spectrochim. Acta
21
,
2063
(
1965
).
27.
(a)
S.
Kaarsemaker
and
J.
Coops
,
Rec. Trav. Chim.
71
,
261
(
1952
);
(b)
J.
Coops
,
H.
Van Kamp
,
W. A.
Labregts
,
B. J.
Visser
, and
H.
Dekker
,
Rec. Trav. Chim.
79
,
1226
(
1960
).
28.
M.
Davis
and
O.
Hassel
,
Acta Chem. Scand.
17
,
1181
(
1963
).
29.
E.
Huber‐Buser
and
J. D.
Dunitz
,
Helv. Chim. Acta
44
,
2027
(
1964
).
30.
R. A.
Bonham
,
L. S.
Bartell
, and
D. A.
Kohl
,
J. Am. Chem. Soc.
81
,
4765
(
1959
).
31.
F. H.
Kurse
and
D. W.
Scott
,
J. Mol. Spectry.
20
,
276
(
1966
).
32.
J. P.
McCullough
,
R. E.
Pennington
,
J. C.
Smith
,
J. A.
Hossencopp
, and
G.
Waddington
,
J. Am. Chem. Soc.
81
,
5880
(
1959
).
33.
J. E.
Kilpartick
,
K. S.
Pitzer
, and
R.
Spitzer
,
J. Am. Chem. Soc.
69
,
2483
(
1947
).
34.
K. S.
Pitzer
and
W. E.
Donath
,
J. Am. Chem. Soc.
81
,
3213
(
1959
).
35.
F.
Miller
and
R.
Inskeep
,
J. Chem. Phys.
18
,
1519
(
1950
).
36.
L. M.
Sverdlov
and
N. I.
Prokof’eva
,
Opt. Spectrosc.
7
,
363
(
1959
).
37.
E.
Billeter
and
Hs. H.
Guenthard
,
Helv. Chim. Acta
41
,
686
(
1958
).
This content is only available via PDF.
You do not currently have access to this content.