When potassium vapor contained in a cell of aluminosilicate glass at 300°C is irradiated with the 6328‐Å line of the He–Ne laser, several fluorescence series are excited which originate from the B 1Πu state of the 39K2 molecule. Analysis of the fluorescence allows the spectroscopic constants (cm−1) of the X 1Σg+ ground state as measured by Loomis and Nusbaum to be corrected, giving
ωe = 92.021, Be = 0.056743,
ωexe = 2.829 × 10−1, αe = 1.65 × 10−4,
ωeye = −2.055 × 10−3, γe = − 7.2 × 10−6,
De = 8.63 × 10−8, δe = +1.5 × 10−7.
The laser line is found to coincide with several molecular transitions. Three of these were determined from analysis of the spectrum to be (v″ = 0, J″ = 82) → (v′ = 7, J′ = 81), (v″ = 0, J″ = 18) → (v′ = 6, J′ = 17), and (v″ = 1, J″ = 72) → (v′ = 8, J′ = 72). Radiation from K atoms accompanying K2 excitation is also observed. It is proposed that the mechanism primarily responsible for the atomic potassium emission is the excitation transfer reaction K2*+K → K2 + K*, leaving the K2 molecule vibrationally excited.
1.
(a)
L. O.
Hocker
,
M. A.
Kovacs
,
C. K.
Rhodes
,
G. W.
Flynn
, and
A.
Javan
,
Phys. Rev. Letters
17
,
233
(
1966
);
(b)
W. B.
Tiffany
,
H. W.
Moos
, and
A. L.
Schawlow
,
Science
157
,
40
(
1967
). The latter paper also gives a number of references to earlier work in the field.
2.
J. R.
Novak
and
M. W.
Windsor
,
J. Chem. Phys.
47
,
3075
(
1967
).
3.
K. G. P.
Sulzmann
,
F.
Bien
, and
S. S.
Penner
,
J. Quant. Spectry. Radiative Transfer
7
,
969
(
1967
).
4.
A. M.
Ronn
and
D. R.
Lide
,
J. Chem. Phys.
47
,
3668
(
1967
);
A. M.
Ronn
,
J. Chem. Phys.
48
,
511
(
1968
).,
J. Quant. Spectrosc. Radiat. Transf.
5.
J. T.
Yardley
and
C. B.
Moore
,
J. Chem. Phys.
45
,
1066
(
1967
);
C. B.
Moore
,
R. E.
Wood
,
B.
Hu
, and
J. T.
Yardley
,
J. Chem. Phys.
45
,
4222
(
1967
); ,
J. Chem. Phys.
J. T.
Yardley
and
C. B.
Moore
,
J. Chem. Phys.
48
,
14
(
1968
).,
J. Chem. Phys.
6.
W. J.
Tango
,
J. K.
Link
, and
R. N.
Zare
,
Bull. Am. Phys. Soc.
12
,
1147
(
1967
);
W. J.
Tango
,
J. K.
Link
, and
R. N.
Zare
,
13
,
847
(
1968
).,
J. Chem. Phys.
7.
S.
Ezekiel
and
R.
Weiss
,
Phys. Rev. Letters
20
,
91
(
1968
).
8.
R. M.
McClintock
and
L. C.
Balling
,
Bull. Am. Phys. Soc.
13
,
55
(
1968
).
9.
R. D.
Verma
,
J. Chem. Phys.
32
,
738
(
1960
).
10.
M.
Lapp
and
L. P.
Harris
,
J. Quant. Spectry. Radiative Transfer
6
,
169
(
1966
).
11.
We are grateful to the Spectra‐Physics Corporation for making this laser available to us.
12.
We wish to express our thanks to Miss Helen Johansen for assisting us to use the Berkeley computer programs.
13.
G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950). The notation throughout this section conforms to that used by Herzberg.
14.
F. W.
Loomis
and
R. E.
Nusbaum
,
Phys. Rev.
38
,
2153
(
1931
).
15.
The upper‐state constants Be and De were recalculated using Loomis and Nusbaum’s result,14Be−Be = 0.00798, giving a value for Be = 0.048763 cm−1 and De = 8.25×10−8cm−1.
16.
R. N.
Zare
,
J. Chem. Phys.
46
,
1934
(
1964
);
Univ. Calif. Radiation Lab. Rept. UCRL‐10925, 1963.
17.
R. T.
Birge
and
H.
Sponer
,
Phys. Rev.
28
,
259
(
1926
).
18.
F. W.
Loomis
and
R. E.
Nusbaum
,
Phys. Rev.
39
,
89
(
1932
)
and
R. E.
Nusbaum
and
F. W.
Loomis
,
Phys. Rev.
39
,
178
(
1932
) give D0 = 0.51±0.02 eV.,
Phys. Rev.
19.
C.
Lewis
,
Z. Physik
69
,
786
(
1931
), as corrected by Loomis and Nusbaum,18 found D0 = 0.56±0.04 eV.
20.
G. W.
King
and
J. H.
Van Vleck
,
Phys. Rev.
55
,
1165
(
1949
).
21.
We are grateful to P. T. Cunningham and Dr. R. Wolff at the University of California, Berkeley, for making these measurements.
22.
J. K.
Link
,
J. Opt. Soc. Am.
56
,
1195
(
1966
).
23.
Evidence for such atom‐atom interchange processes has been provided by the recent crossed‐beam chemiluminescent studies of
M. C.
Moulton
and
D. R.
Herschbach
,
J. Chem. Phys.
44
,
3010
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.