The microwave spectrum of cyclobutanone in the ground state and the first 10 excited states of the ring‐puckering vibration has been assigned. Most features of the observed variation of rotational constants with ring‐puckering state and of the far‐infrared spectrum are accounted for with the ring‐puckering potential function
with ν0 = 29.85 cm−1. Z is a dimensionless coordinate for the ring‐puckering motion. A barrier of 7.6 ± 2 cm exists at the planar ring conformation; with the υ = 0 level lying 9.2 cm−1 above the top of the barrier. A perturbation of the υ = 8 state is discussed. The ground‐state rotational spectra of the three 13C monosubstituted species have also been assigned and the structure of the ring determined. With the carbonyl carbon labeled C1 and other carbons numbered sequentially around the ring, the ring structural parameters are
Stark‐effect measurements have yielded a value of 2.89 ± 0.03 D for the dipole moment of the common isotopic species in the ground vibrational state.
1.
G. W.
Rathjens
,
N. K.
Freeman
,
W. D.
Gwinn
, and
K. S.
Pitzer
,
J. Am. Chem. Soc.
75
,
5634
(
1953
).
2.
S. I.
Chan
,
J.
Zinn
,
J.
Fernandez
, and
W. D.
Gwinn
,
J. Chem. Phys.
33
,
1643
(
1960
).
3.
S. I.
Chan
,
J.
Zinn
, and
W. D.
Gwinn
,
J. Chem. Phys.
34
,
1319
(
1961
).
4.
S. I.
Chan
,
T. R.
Borgers
,
J. W.
Russell
,
H. L.
Strauss
, and
W. D.
Gwinn
,
J. Chem. Phys.
44
,
1103
(
1966
).
5.
D. O.
Harris
,
H. W.
Harrington
,
A. C.
Luntz
, and
W. D.
Gwinn
,
J. Chem. Phys.
44
,
3467
(
1966
).
6.
H. W.
Harrington
,
J. Chem. Phys.
44
,
3481
(
1966
).
7.
J. D.
Swalen
and
C. C.
Costain
,
J. Chem. Phys.
31
,
1562
(
1959
).
8.
T. R.
Borgers
and
H. L.
Strauss
,
J. Chem. Phys.
45
,
947
(
1966
).
9.
J. R.
Durig
and
R. C.
Lord
,
J. Chem. Phys.
45
,
61
(
1966
).
10.
A.
Bauder
,
F.
Tank
, and
H.
Günthard
,
Helv. Chim. Acta
46
,
1453
(
1963
).
11.
K.
Frei
and
H.
Günthard
,
J. Mol. Spectry.
5
,
218
(
1960
).
12.
The detailed discussion of this point in Ref. 2 applies directly to the present study.
13.
L. H.
Scharpen
,
J. Chem. Phys.
48
,
3552
(
1968
).
14.
S. I.
Chan
and
D.
Stelman
,
J. Chem. Phys.
39
,
545
(
1963
).
15.
S. I.
Chan
and
D.
Stelman
,
J. Mol. Spectry.
10
,
278
(
1963
).
16.
The rotational constants were weighted by their relative experimental uncertainties of 13:1:1 for A, B, and C, respectively. A. Vibrational deviation of 0.1 cm−1 was weighted the same as a rotational constant deviation of 0.1 MHz.
17.
In their treatment of the inversion mode of ammonia using the potential function Eq. (3),
Swalen
and
Ibers
[
J. Chem. Phys.
36
,
1914
(
1962
)] found that convergence could not be obtained if all three potential constants were included in the iterative process. These authors chose to fix the quartic coefficient rather than the coefficient in the exponential.
18.
The rotational‐constant data suffice to fix only the parameter η in Eq. (4). The required scale factor ν0 was obtained by scaling on the υ = 1→2 Vibrational frequency.
19.
D. R.
Lide
, Jr.
,
Tetrahedron
17
,
125
(
1962
).
20.
R. H.
Schwendeman
,
G. D.
Jacobs
, and
T. M.
Krigas
,
J. Chem. Phys.
40
,
1022
(
1964
).
21.
F. L.
Tobiason
and
R. H.
Schwendeman
,
J. Chem. Phys.
40
,
1014
(
1964
).
22.
L. H.
Scharpen
and
V. W.
Laurie
,
J. Chem. Phys.
43
,
2765
(
1965
).
23.
S. A.
Marshall
and
J.
Weber
,
Phys. Rev.
105
,
1502
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.