The problem of understanding potential‐energy functions for diatomic molecules is discussed. First, starting from the virial theorem, the Born‐Oppenheimer electronic energy W ( R) is shown to satisfy the differential equation
, where R is the internuclear distance and T(R) is the electronic kinetic energy, as a function of distance. Then the assumption Q(R) = const for R near Re, equivalent to the assumption
, is considered. This assumption is shown to lead to simple formulas relating quadratic (ke), cubic (le), quartic (me), and higher potential constants, e.g., le = − 6ke, me = 36ke, (keme / le2)1 / 2 = 1. Ratios of potential constants are calculated for many diatomic species, including several electronically excited states. They are found to agree well with experiment. The quadratic force constants ke are estimated for a number of species, using a modified overlap‐population concept. An approximate formula is developed which gives the force constant in terms of overlap populations, the equilibrium distance, the dissociation energy, and atomic‐orbital kinetic energies. Calculated and experimental values agree within about 15%. Finally, a well‐known approximate rule that Re2ωe = const, relating internuclear distance and vibrational frequency through a series of different electronic states of one molecule or different molecules, is elucidated using a free‐electron or uncertainty‐principle interpretation of the R‐dependent part of T(R).
1.
For example,
Y. P.
Varshni
,
Rev. Mod. Phys.
29
,
664
(
1957
);
J. M.
Stutman
,
E. R.
Lippincott
, and
D.
Steele
,
J. Chem. Phys.
39
,
564
(
1963
).
2.
Except for the hydrogen‐molecule ion and other one‐electron diatomic molecules, the only truly accurate theoretical potential‐energy curves available are for the hydrogen molecule, for which see Ref. 3.
3.
W.
Kołos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
4.
J. R.
Platt
,
J. Chem. Phys.
18
,
932
(
1950
).
5.
J. R.
Arnold
,
J. Chem. Phys.
24
,
181
(
1956
);
S. L.
Matlow
,
J. Chem. Phys.
34
,
1187
(
1961
); ,
J. Chem. Phys.
H.
Müller
and
H.
Dunken
,
Theoret. Chim. Acta
3
,
97
(
1965
).
6.
(a)
A. A.
Frost
,
J. Chem. Phys.
22
,
1613
(
1954
);
(b)
E. R.
Lippincott
,
J. Chem. Phys.
23
,
603
(
1955
).,
J. Chem. Phys.
7.
C. H. Douglas
Clark
,
Phil. Mag.
18
,
459
(
1934
);
J. W.
Linnett
,
Trans. Faraday Soc.
36
,
1123
(
1940
);
J. W.
Linnett
,
38
,
1
(
1942
).,
Trans. Faraday Soc.
8.
K. M.
Guggenheimer
,
Proc. Phys. Soc. (London)
58
,
456
(
1946
).
9.
W.
Gordy
,
J. Chem. Phys.
14
,
305
(
1946
).
10.
K.
Ruedenberg
,
Rev. Mod. Phys.
34
,
326
(
1962
).
11.
W. L.
Clinton
,
J. Chem. Phys.
36
,
556
(
1962
);
W. L.
Clinton
,
38
,
2339
(
1963
).,
J. Chem. Phys.
12.
W. L.
Clinton
and
W.
Hamilton
,
Rev. Mod. Phys.
32
,
422
(
1960
);
W. L.
Clinton
and
S. D.
Frattali
,
J. Chem. Phys.
39
,
3316
(
1963
);
E. R.
Davidson
,
J. Chem. Phys.
36
,
2527
(
1962
); ,
J. Chem. Phys.
L.
Salem
,
J. Chem. Phys.
38
,
1227
(
1963
); ,
J. Chem. Phys.
P.
Phillipson
,
J. Chem. Phys.
39
,
3010
(
1963
); ,
J. Chem. Phys.
P.
Phillipson
,
44
,
633
(
1966
); ,
J. Chem. Phys.
W.
Ross
and
P.
Phillipson
,
J. Chem. Phys.
44
,
844
(
1966
); ,
J. Chem. Phys.
R. H.
Schwendeman
,
J. Chem. Phys.
44
,
556
(
1966
); ,
J. Chem. Phys.
M. L.
Benston
and
B.
Kirtman
,
J. Chem. Phys.
44
,
119
(
1966
); ,
J. Chem. Phys.
M. L.
Benston
,
J. Chem. Phys.
44
,
1300
(
1966
); ,
J. Chem. Phys.
R. F. W.
Bader
,
W. H.
Henneker
, and
P. E.
Cade
,
J. Chem. Phys.
46
,
3341
(
1967
).,
J. Chem. Phys.
13.
R. G.
Pari
and
R. F.
Borkman
,
J. Chem. Phys.
46
,
3683
(
1967
).
14.
R. T.
Birge
,
Phys. Rev.
25
,
240
(
1925
);
R.
Mecke
,
Z. Physik
32
,
823
(
1925
).
15.
J. C. Slater, Quantum Theory of Molecules and Solids (McGraw‐Hill Book Co., New York, 1963), Vol. I, pp. 29, 56, 254.
16.
A. A.
Frost
and
B.
Musulin
,
J. Am. Chem. Soc.
76
,
2045
(
1954
).
17.
See also,
F.
Jeňc
and
J.
Pliva
,
Collection Czech. Chem. Commun.
28
,
1449
(
1963
);
F.
Jenc
,
J. Chem. Phys.
47
,
127
(
1967
).
18.
E.
Fues
,
Ann. Physik
80
,
367
(
1926
).
See also, L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw‐Hill Book Co., Inc., New York, 1935), p. 274.
19.
For example,
generates w(r) = n(m−n)−1r−m+m(n−m)−1r−n. See Ref. 13 and
G. B. B. M.
Sutherland
,
J. Chem. Phys.
8
,
161
(
1940
).
20.
G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950) 2nd ed.;
E. R.
Lippincott
,
D.
Steele
, and
P.
Caldwell
,
J. Chem. Phys.
35
,
123
(
1961
);
D.
Steele
and
E. R.
Lippincott
,
J. Chem. Phys.
35
,
2065
(
1961
).,
J. Chem. Phys.
21.
P. E.
Cade
and
W. M.
Huo
,
J. Chem. Phys.
47
,
614
(
1967
).
22.
C. A. Coulson, Valence (Oxford University Press, Cambridge, England, 1961), 2nd ed., p. 39.
23.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
,
1841
2338
,
2343
(
1955
).
24.
S.
Fraga
and
B. J.
Ransil
,
J. Chem. Phys.
34
,
727
(
1961
).
25.
B. J.
Ransil
,
Rev. Mod. Phys.
32
,
245
(
1960
).
26.
Reference 22, pp. 107–110.
27.
See, for example, pp. 341, 343 of Herzberg, Ref. 20.
28.
R. S.
Mulliken
,
J. Chem. Phys.
36
,
3428
(
1962
).
29.
See, for example, the papers of J. R. Piatt and co‐workers, collected in Free‐Electron Theory of Conjugated Molecules (John Wiley & Sons, Inc., New York, 1964).
30.
R. S.
Mulliken
,
Intern. J. Quantum Chem.
1
,
105
(
1967
).
31.
This more general applicability of the Re2ω2 rule does not seem to have been stressed previously. On the other hand, the rule must be applied with caution. As a referee has pointed out, the value of Re2ω2 can be drastically altered by isotopic substitution, particularly in the case of hydrides. Our theoretical formulation [Eq. (43)] involves the reduced mass explicitly and, hence, correctly predicts the isotope effect.
32.
R. M.
Badger
,
J. Chem. Phys.
2
,
128
(
1962
).
33.
J. N.
Murrell
,
J. Mol. Spectry.
4
,
446
(
1960
).
34.
P.
Empedocles
,
J. Chem. Phys.
46
,
4474
(
1967
).
35.
We are indebted to Professor Adam Allerhand for pointing out these relationships.
36.
In collaboration with Miss Joyce E. Brown.
37.
See Herzberg, Ref. 20, pp. 453–459, for discussion of, and references to, several of these empirical rules.
Note added in proof: There are several errors in the numerical values of the quantities le (calc) and me (calc) in Table I of our previous Communication [
J. Chem. Phys.
46
,
3683
(
1967
)]. The correct values of these quantities are given in Tables I, II, and III of the present paper. We are indebted to Professor David M. Bishop for calling these errors to our attention.
This content is only available via PDF.
You do not currently have access to this content.